| 注册
首页|期刊导航|通信学报|联邦学习中的模型逆向攻防研究综述

联邦学习中的模型逆向攻防研究综述

王冬 秦倩倩 郭开天 刘容轲 颜伟鹏 任一支 罗清彩 申延召

通信学报2023,Vol.44Issue(11):94-109,16.
通信学报2023,Vol.44Issue(11):94-109,16.DOI:10.11959/j.issn.1000-436x.2023209

联邦学习中的模型逆向攻防研究综述

Survey on model inversion attack and defense in federated learning

王冬 1秦倩倩 1郭开天 1刘容轲 1颜伟鹏 1任一支 1罗清彩 2申延召3

作者信息

  • 1. 杭州电子科技大学网络空间安全学院,浙江 杭州 310018
  • 2. 山东浪潮科学研究院有限公司,山东 济南 250000
  • 3. 山东区块链研究院,山东 济南 250000
  • 折叠

摘要

Abstract

As a distributed machine learning technology,federated learning can solve the problem of data islands.How-ever,because machine learning models will unconsciously remember training data,model parameters and global models uploaded by participants will suffer various privacy attacks.A systematic summary of existing attack methods was con-ducted for model inversion attacks in privacy attacks.Firstly,the theoretical framework of model inversion attack was summarized and analyzed in detail.Then,existing attack methods from the perspective of threat models were summa-rized,analyzed and compared.Then,the defense strategies of different technology types were summarized and compared.Finally,the commonly used evaluation criteria and datasets were summarized for inversion attack of existing models,and the main challenges and future research directions were summarized for inversion attack of models.

关键词

联邦学习/模型逆向攻击/隐私安全

Key words

federated learning/model inversion attack/privacy security

分类

信息技术与安全科学

引用本文复制引用

王冬,秦倩倩,郭开天,刘容轲,颜伟鹏,任一支,罗清彩,申延召..联邦学习中的模型逆向攻防研究综述[J].通信学报,2023,44(11):94-109,16.

基金项目

浙江省"尖兵""领雁"研发基金资助项目(No.2023C03203,No.2023C03180,No.2022C03174) (No.2023C03203,No.2023C03180,No.2022C03174)

浙江省属高校基本科研业务费专项资金资助项目(No.GK229909299001-023) Zhejiang Province's"Sharp Blade"and"Leading Goose"Research and Development Project(No.2023C03203,No.2023C03180,No.2022C03174),Zhejiang Province-funded Basic Research Fund for Universities Affiliated with Zhejiang Province(No.GK229909299001-023) (No.GK229909299001-023)

通信学报

OA北大核心CSCDCSTPCD

1000-436X

访问量0
|
下载量0
段落导航相关论文