厦门大学学报(自然科学版)2023,Vol.62Issue(6):924-929,6.DOI:10.6043/j.issn.0438-0479.202305010
流体运动中磁场的稳定作用
Stabilizing effects of magnetic field on fluid motion
摘要
Abstract
Some of our recent works on the stabilizing effects of the magnetic field on the fluid motion in the theoretical research of magnetohydrodynamics(MHD)equations are introduced.These stabilizing effects include the stability of the Cauchy problem for the 2D non-fully dissipative MHD,the stability of the Rayleigh-Taylor problem for the viscous non-resistive MHD,the global well-posedness of the free interface problem for the inviscid resistive MHD,and the existence of multi-dimensional contact discontinuities solutions for the ideal MHD.Furthermore,some unsolved problems are mentioned.关键词
磁流体力学方程组/适定性/稳定性/经典解/间断解Key words
magnetohydrodynamics equations/well-posedness/stability/classical solutions/discontinuous solutions分类
数理科学引用本文复制引用
谭忠,王焰金,张剑文..流体运动中磁场的稳定作用[J].厦门大学学报(自然科学版),2023,62(6):924-929,6.基金项目
国家自然科学基金(12071391,12231016,12171401,12071390,12131007) (12071391,12231016,12171401,12071390,12131007)