| 注册
首页|期刊导航|中南大学学报(自然科学版)|基于预测补偿网络的锌扫选尾矿品位预测

基于预测补偿网络的锌扫选尾矿品位预测

刘嘉鹏 唐朝晖 钟宇泽 郑锶 向婉蓉

中南大学学报(自然科学版)2023,Vol.54Issue(11):4370-4379,10.
中南大学学报(自然科学版)2023,Vol.54Issue(11):4370-4379,10.DOI:10.11817/j.issn.1672-7207.2023.11.015

基于预测补偿网络的锌扫选尾矿品位预测

Grade prediction of zinc scavenging tailings based on prediction-compensation network

刘嘉鹏 1唐朝晖 1钟宇泽 1郑锶 1向婉蓉1

作者信息

  • 1. 中南大学 自动化学院,湖南 长沙,410083
  • 折叠

摘要

Abstract

Aiming at the problem of low prediction accuracy of key performance indicators of froth flotation,a grade prediction method based on prediction-compensation(PC)network was proposed.The prediction-compensation network was divided into two parts.The first part constructed a GRU-based zinc flotation tailings grade prediction model,which made full use of the time series information of the froth image to obtain the initial grade prediction value.In the second part,in order to solve the problem that the input and output of unseen samples were difficult to map accurately,a dynamic residual compensation(DRC)model composed of the residual trigger derivation module and the improved Choquet fuzzy integration(ICFI)aggregation module was established to compensate for the initial grade prediction value to obtain more accurate results.The results show that compared with the traditional neural network,the proposed prediction-compensation network has better fitting ability and stability,and improves the prediction accuracy and reliability.

关键词

泡沫浮选/品位预测/预测补偿网络/Choquet模糊积分

Key words

froth flotation/grade prediction/prediction-compensation network/Choquet fuzzy integral

分类

信息技术与安全科学

引用本文复制引用

刘嘉鹏,唐朝晖,钟宇泽,郑锶,向婉蓉..基于预测补偿网络的锌扫选尾矿品位预测[J].中南大学学报(自然科学版),2023,54(11):4370-4379,10.

基金项目

国家自然科学基金资助项目(62171476)(Project(62171476)supported by the National Natural Science Foundation of China) (62171476)

中南大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1672-7207

访问量0
|
下载量0
段落导航相关论文