| 注册
首页|期刊导航|郑州大学学报(理学版)|基于多特征融合和改进SIFT的目标跟踪算法

基于多特征融合和改进SIFT的目标跟踪算法

李文举 王子杰 崔柳

郑州大学学报(理学版)2024,Vol.56Issue(1):40-46,7.
郑州大学学报(理学版)2024,Vol.56Issue(1):40-46,7.DOI:10.13705/j.issn.1671-6841.2022268

基于多特征融合和改进SIFT的目标跟踪算法

Target Tracking Algorithm Based on Multiple Feature Fusion and Improved SIFT

李文举 1王子杰 1崔柳1

作者信息

  • 1. 上海应用技术大学 计算机科学与信息工程学院 上海 201418
  • 折叠

摘要

Abstract

When the moving target was deformed,rotated and interfered by the illumination or back-ground during the tracking task,it could be shifted or lost,which would reduce the tracking accuracy.A target tracking algorithm based on multiple feature fusion and improved SIFT was proposed.The feature points were extracted in the high entropy part of the image,and the mismatched feature points were elimi-nated by using the hash algorithm.At the same time,the perceptual hash and differential hash were im-proved,and the improved image hash features,color features and SIFT features were fused and applied to the tracking algorithm.The algorithm was tested on OTB-100 dataset,and the success rate reacheed 94.3%.

关键词

目标跟踪/图像哈希/信息熵/颜色矩/SIFT

Key words

target tracking/image hash/information entropy/color moment/SIFT

分类

信息技术与安全科学

引用本文复制引用

李文举,王子杰,崔柳..基于多特征融合和改进SIFT的目标跟踪算法[J].郑州大学学报(理学版),2024,56(1):40-46,7.

基金项目

国家自然科学基金项目(61973307,61903256). (61973307,61903256)

郑州大学学报(理学版)

OA北大核心CSTPCD

1671-6841

访问量0
|
下载量0
段落导航相关论文