| 注册
首页|期刊导航|北京交通大学学报|基于新型对抗自编码器的铁路货车车辆异物检测算法

基于新型对抗自编码器的铁路货车车辆异物检测算法

丁凤霞

北京交通大学学报2023,Vol.47Issue(5):25-33,9.
北京交通大学学报2023,Vol.47Issue(5):25-33,9.DOI:10.11860/j.issn.1673-0291.20230026

基于新型对抗自编码器的铁路货车车辆异物检测算法

Foreign object detection algorithm for railway freight cars based on a novel adversarial autoencoder

丁凤霞1

作者信息

  • 1. 北京交通大学 经济管理学院,北京 100044||国家能源投资集团有限责任公司,北京 100011
  • 折叠

摘要

Abstract

The Trouble of Moving Freight car Detection System(TFDS)utilizes manual methods to detect faults in captured images of key sections of railway freight cars,which is not only inefficient but also susceptible to false alarms.Non-manual fault detection methods typically employ traditional im-age processing techniques and deep learning-based target detection networks,which are limited by the available image data.To overcome the challenges associated with collecting and annotating fault im-ages,addressing the most frequently occurring fault in railway freight cars,that is,foreign objects fault,this study proposes a novel vehicle foreign object detection algorithm.The algorithm is based on an innovative adversarial autoencoder,and it uses an unlabeled training dataset of normal images.To address small foreign object targets,the attention mechanism is incorporated into the adversarial auto-encoder structure,and the effectiveness of various attention mechanisms in the target scenario is com-pared to select the most suitable configuration.Additionally,feature matching loss is employed to opti-mize the loss function and improve the stability of adversarial training.Furthermore,a feature vector outlier scoring mechanism is introduced to assess overall abnormal performance,considering both the application context and the characteristics of the generation model.The experiment results show that the proposed vehicle foreign object detection algorithm is effective in two scenarios:the bottom and the side of the bogie,achieving Area Under Curve(AUC)indicators of 96.9%and 99.3%,respectively.

关键词

铁路货车/车辆异物检测/对抗自编码器/故障检测/注意力机制

Key words

railway freight car/vehicle foreign object detection/adversarial autoencoder/fault d-etection/attention mechanism

分类

信息技术与安全科学

引用本文复制引用

丁凤霞..基于新型对抗自编码器的铁路货车车辆异物检测算法[J].北京交通大学学报,2023,47(5):25-33,9.

基金项目

国家能源集团科技开发项目(CJNY-20-139) (CJNY-20-139)

中央高校基本科研业务费专项资金(2022JBXT005) (2022JBXT005)

国家自然科学基金(52272429)Technology Development Program of China Energy Investment Corporation(CJNY-20-139) (52272429)

Fundamental Research Funds for the Central Universities(2022JBXT005) (2022JBXT005)

National Natural Science Foundation of China(52272429) (52272429)

北京交通大学学报

OA北大核心CSCDCSTPCD

1673-0291

访问量0
|
下载量0
段落导航相关论文