| 注册
首页|期刊导航|电池|遗忘因子递推最小二乘法辨识锂离子电池参数

遗忘因子递推最小二乘法辨识锂离子电池参数

赵转 曹以龙 杜君莉 史书怀

电池2023,Vol.53Issue(6):629-633,5.
电池2023,Vol.53Issue(6):629-633,5.DOI:10.19535/j.1001-1579.2023.06.009

遗忘因子递推最小二乘法辨识锂离子电池参数

Identification of Li-ion battery parameters by forgetting factor recursive least square method

赵转 1曹以龙 2杜君莉 3史书怀3

作者信息

  • 1. 郑州电力高等专科学校电力工程学院,河南 郑州 450000
  • 2. 上海电力大学电子与信息工程学院,上海 200438
  • 3. 国网河南省电力公司电力科学研究院,河南 郑州 450000
  • 折叠

摘要

Abstract

The recursive least square method was a common method to identify parameters of the equivalent circuit model of Li-ion battery.However,with the increase of data in the process of recursion,the generation of new data would be affected by the old data,resulting in large errors.Therefore,the second-order RC equivalent circuit model of Li-ion battery was modeled and analyzed,a forgetting factor recursive least squares(FFRLS)method was proposed for online identification of equivalent circuit model parameters.On the basis of dynamic stress test experiment,the parameters of equivalent circuit model were identified online,the voltage of battery was predicted online by the identified circuit parameters.By comparing the root mean square error of terminal voltage under different forgetting factors(λ),it was found that λ= 0.86-0.94 was the best range.The accuracy of the proposed algorithm was superior to the recursive least squares(RLS)method,which verified the feasibility and effectiveness of algorithm.

关键词

锂离子电池/等效电池模型/递推最小二乘(RLS)法/遗忘因子递推最小二乘(FFRLS)法/参数辨识

Key words

Li-ion battery/equivalent circuit model/recursive least square(RLS)method/forgetting factor recursive least square(FFRLS)method/parameter identification

分类

信息技术与安全科学

引用本文复制引用

赵转,曹以龙,杜君莉,史书怀..遗忘因子递推最小二乘法辨识锂离子电池参数[J].电池,2023,53(6):629-633,5.

基金项目

中国博士后科学基金第 3 批特别资助(站前)(2021TQ0097),河南省高等学校重点科研项目(23B470006) (站前)

电池

OA北大核心CSTPCD

1001-1579

访问量0
|
下载量0
段落导航相关论文