| 注册
首页|期刊导航|电池|基于TVFRLS和SVD-UKF的锂离子电池SOC估算

基于TVFRLS和SVD-UKF的锂离子电池SOC估算

林正廉 卢玉斌 陈亮 柯彦舜

电池2023,Vol.53Issue(6):634-638,5.
电池2023,Vol.53Issue(6):634-638,5.DOI:10.19535/j.1001-1579.2023.06.010

基于TVFRLS和SVD-UKF的锂离子电池SOC估算

SOC estimation for Li-ion battery based on TVFRLS and SVD-UKF

林正廉 1卢玉斌 2陈亮 1柯彦舜2

作者信息

  • 1. 福州大学先进制造学院,福建 泉州 362200||中国科学院福建物质结构研究所泉州装备制造研究中心,福建 泉州 362200
  • 2. 中国科学院福建物质结构研究所泉州装备制造研究中心,福建 泉州 362200
  • 折叠

摘要

Abstract

The accuracy of traditional off-line parameter identification methods under the influence of complex vehicle operating conditions was low,the unscented Kalman filter(UKF)algorithm was vulnerable to encounters issues that the non-positive-definite covariance matrix during the estimation of state of charge(SOC),resulting in SOC estimation failures.The joint online SOC estimation was carried out using the time-variable forgetting factor recursive least squares method(TVFRLS)and singular value decomposition unscented Kalman filter(SVD-UKF)to improve the accuracy and robustness of the algorithm under complex conditions.The algorithm was verified by urban dynamometer driving schedule(UDDS).The absolute estimation error(AEE)of the combined algorithm of TVFRLS and SVD-UKF was 1.31%,the mean absolute error(MEA)was 0.56%and the root mean square error(RMSE)was 0.75%.Compared with the traditional UKF algorithm,its MEA and RMSE were reduced by 60.0%and 51.9%.

关键词

锂离子电池/荷电状态(SOC)/时变遗忘因子最小二乘法(TVFRLS)/无迹卡尔曼滤波(UKF)/电动汽车/参数辨识

Key words

Li-ion battery/state of charge(SOC)/time-variable forgetting factor recursive least squares method(TVFRLS)/unscented Kalman filter(UKF)/electric vehicle/parameter identification

分类

信息技术与安全科学

引用本文复制引用

林正廉,卢玉斌,陈亮,柯彦舜..基于TVFRLS和SVD-UKF的锂离子电池SOC估算[J].电池,2023,53(6):634-638,5.

基金项目

国家自然科学基金青年项目(42202302),福建省自然科学基金项目(2021J05104) (42202302)

电池

OA北大核心CSTPCD

1001-1579

访问量0
|
下载量0
段落导航相关论文