| 注册
首页|期刊导航|电讯技术|基于协同学习的频谱智能感知方法

基于协同学习的频谱智能感知方法

潘成胜 蔡韧 石怀峰 施建锋 王钰玥

电讯技术2023,Vol.63Issue(12):1839-1846,8.
电讯技术2023,Vol.63Issue(12):1839-1846,8.DOI:10.20079/j.issn.1001-893x.220721005

基于协同学习的频谱智能感知方法

An Intelligent Spectrum Sensing Method Based on Collaborative Learning

潘成胜 1蔡韧 1石怀峰 2施建锋 3王钰玥1

作者信息

  • 1. 南京信息工程大学 电子与信息工程学院,南京 210044
  • 2. 南京信息工程大学 电子与信息工程学院,南京 210044||南京理工大学 自动化学院,南京 210094
  • 3. 南京信息工程大学 电子与信息工程学院,南京 210044||东南大学 移动通信国家重点实验室,南京 211189
  • 折叠

摘要

Abstract

The spatial and temporal distribution of current heterogeneous network spectrum environment is complex and variable,the data preprocessing of existing multi-user cooperative sensing methods is cumbersome,and the sensing efficiency is low.For above problems,a cooperative learning-based spectrum intelligent sensing algorithm is proposed under a system architecture consisting of user sensing layer and edge fusion layer.The user-aware layer uses a multi-branch convolutional recurrent gated neural network to realize local sensing by using the underlying structural information of the original normalized energy signal.The edge fusion layer performs message propagation based on a self-attention mechanism and fuses the sensing results of each unauthorized user in the user-aware layer to arrive at the final decision.Experiments show that when the signal-to-noise ratio is-20 dB and five users are sensing cooperatively,the proposed method is able to achieve a detection probability of 18.3% at a false alarm probability of 1.91% ,an improvement of 6.1% compared with the comparison model,and does not require additional pre-processing of the raw data,thus reducing the complexity of the algorithm.

关键词

智能频谱感知/协同学习/卷积神经网络/门控循环单元/自注意力机制

Key words

intelligent spectrum sensing/collaborative learning/convolutional neural network/gated cycle unit/self-attention mechanism

分类

信息技术与安全科学

引用本文复制引用

潘成胜,蔡韧,石怀峰,施建锋,王钰玥..基于协同学习的频谱智能感知方法[J].电讯技术,2023,63(12):1839-1846,8.

基金项目

国家自然科学基金资助项目(61931004,61801073) (61931004,61801073)

江苏省自然科学基金项目(BK20210641) (BK20210641)

电讯技术

OA北大核心CSTPCD

1001-893X

访问量0
|
下载量0
段落导航相关论文