| 注册
首页|期刊导航|电讯技术|通道门控Res2Net卷积神经网络自动调制识别

通道门控Res2Net卷积神经网络自动调制识别

陈昊 郭文普 康凯

电讯技术2023,Vol.63Issue(12):1869-1875,7.
电讯技术2023,Vol.63Issue(12):1869-1875,7.DOI:10.20079/j.issn.1001-893x.230829006

通道门控Res2Net卷积神经网络自动调制识别

Channel Gated Res2Net Convolutional Neural Network for Automatic Modulation Recognition

陈昊 1郭文普 1康凯1

作者信息

  • 1. 火箭军工程大学 作战保障学院,西安 710025
  • 折叠

摘要

Abstract

In response to the problem of low accuracy in automatic modulation recognition under low signal-to-noise ratio(SNR)conditions,the authors propose a channel gated residual 2-network(Res2Net)convolutional neural network(CNN)model.The model mainly consists of two-dimensional CNN(2D-CNN),multi-scale Res2Net,squeeze-and-excitation network(SENet)and long short-term memory(LSTM)network,which extracts multi-scale features from raw I/Q data through convolution,adjusts the weight of feature channels through gating mechanism,and uses LSTM to model the sequence of convolutional features to ensure effective data feature mining,thereby improving the accuracy of automatic modulation recognition.The modulation recognition experiment on the benchmark dataset RML2016.10a shows that the recognition accuracy of the proposed model is 92.68%at 12 dB SNR,and the average recognition accuracy is above 91% when the SNR is greater than 2 dB.Compared with classical CLDNN model,LSTM model,similar PET-CGDNN model and CGDNet model,the proposed model can achieve higher modulation type recognition accuracy.

关键词

自动调制识别/卷积神经网络/压缩与激励网络/多尺度残差网络/长短期记忆网络

Key words

automatic modulation recognition/convolutional neural network/squeeze-and-excitation network/multi-scale residual network/long short-term memory network

分类

信息技术与安全科学

引用本文复制引用

陈昊,郭文普,康凯..通道门控Res2Net卷积神经网络自动调制识别[J].电讯技术,2023,63(12):1869-1875,7.

电讯技术

OA北大核心CSTPCD

1001-893X

访问量0
|
下载量0
段落导航相关论文