| 注册
首页|期刊导航|哈尔滨工程大学学报|联合匹配场和神经网络的声速时间场构建方法

联合匹配场和神经网络的声速时间场构建方法

李林洋 徐天河 王君婷 黄威 高凡 舒建旭

哈尔滨工程大学学报2023,Vol.44Issue(11):2044-2053,10.
哈尔滨工程大学学报2023,Vol.44Issue(11):2044-2053,10.DOI:10.11990/jheu.202308004

联合匹配场和神经网络的声速时间场构建方法

A method for constructing a sound velocity time field by combining a matched field and neural network

李林洋 1徐天河 2王君婷 2黄威 3高凡 2舒建旭2

作者信息

  • 1. 长安大学地质工程与测绘学院,陕西西安 710054
  • 2. 山东大学空间科学与物理学院,山东威海 264209
  • 3. 中国海洋大学信息科学与工程学部,山东青岛 266100
  • 折叠

摘要

Abstract

The variation in a local sound velocity field severely affects ocean acoustic positioning and navigation ac-curacy,and the construction of a high-precision and high-resolution sound velocity time field is particularly impor-tant.Aiming at the problem of the low accuracy of sound velocity field construction due to insufficient reference samples of the local sound velocity field,this paper establishes a construction method for a sound velocity time field based on the theory of a matched field and neural network.Matched field processing is adopted to simulate the sound velocity profile,using communication data and full water depth sound velocity profile data.Then,the sound velocity profile is constructed by a BP neural network fitting the EOF reconstruction coefficients and compared with the measured disposable temperature and salt depth profiler data.The results show that the root mean square error of MFPBP for simulating sound velocity profiles considering matched fields is 0.665 m/s,38.4%higher than 1.079 m/s for average sound velocity profiles.Therefore,the algorithm can improve the accuracy of constructing a sound velocity time field in complex marine environments.

关键词

声速时间场构建/匹配场处理/后向传播神经网络/声速剖面反演/经验正交函数分解/启发式算法/射线声学理论/第一模态系数

Key words

construction of sound velocity time field/matching field processing/BP neural network/inversion of sound velocity profile/empirical orthogonal function decomposition/heuristic algorithm/theory of ray acoustics/first modal coefficient

分类

海洋学

引用本文复制引用

李林洋,徐天河,王君婷,黄威,高凡,舒建旭..联合匹配场和神经网络的声速时间场构建方法[J].哈尔滨工程大学学报,2023,44(11):2044-2053,10.

基金项目

崂山实验室科技创新项目(LSKJ202205104) (LSKJ202205104)

山东省自然科学基金项目(ZR2023QD163) (ZR2023QD163)

中国博士后科学基金项目(2023M732041) (2023M732041)

地理信息工程国家重点实验室基金项目(SKLGIE2022-ZZ2-02). (SKLGIE2022-ZZ2-02)

哈尔滨工程大学学报

OACSCDCSTPCD

1006-7043

访问量0
|
下载量0
段落导航相关论文