| 注册
首页|期刊导航|航空科学技术|基于深度强化学习的无人机航路规划算法研究

基于深度强化学习的无人机航路规划算法研究

毕文豪 段晓波

航空科学技术2023,Vol.34Issue(12):118-124,7.
航空科学技术2023,Vol.34Issue(12):118-124,7.DOI:10.19452/j.issn1007-5453.2023.12.014

基于深度强化学习的无人机航路规划算法研究

Research on UAV Path Planning Method Based on Deep Reinforcement Learning

毕文豪 1段晓波1

作者信息

  • 1. 西北工业大学,陕西 西安 710072
  • 折叠

摘要

Abstract

Path planning is one of the key technologies for UAVs to accomplish operation missions in complex battlefield environments.In this paper,we propose a UAV path planning method based on PER-D3QN,which realizes the path planning for UAVs in the battlefield environment through network model design,state space design,action space design and reward function design.The PER-D3QN algorithm combines the target network,dueling network and prioritized experience replay,which effectively solves the overfitting problem and unstable problem in deep reinforcement learning.In the end,it is verified through simulation experiments that the proposed method achieved better convergence,stability and applicability compared with double DQN and DQN algorithms,and better real-time performance compared with A* algorithm,which can efficiently realize the path planning of UAVs in the complex battlefield environment,and effectively help the UAVs to attempt the operational mission.

关键词

无人机/航路规划/深度强化学习/战场环境建模/PER-D3QN

Key words

UAV/path planning/deep reinforcement learning/battlefield environment modeling/PER-D3QN

分类

航空航天

引用本文复制引用

毕文豪,段晓波..基于深度强化学习的无人机航路规划算法研究[J].航空科学技术,2023,34(12):118-124,7.

基金项目

航空科学基金(201905053001) (201905053001)

国家自然科学基金(62073267,61903305) Aeronautical Science Foundation of China(201905053001) (62073267,61903305)

National Natural Science Foundation of China(62073267,61903305) (62073267,61903305)

航空科学技术

1007-5453

访问量0
|
下载量0
段落导航相关论文