| 注册
首页|期刊导航|湖南大学学报(自然科学版)|改进多重字典联合自适应学习的稀疏壁画修复

改进多重字典联合自适应学习的稀疏壁画修复

陈永 杜婉君 赵梦雪

湖南大学学报(自然科学版)2023,Vol.50Issue(12):1-9,9.
湖南大学学报(自然科学版)2023,Vol.50Issue(12):1-9,9.DOI:10.16339/j.cnki.hdxbzkb.2023352

改进多重字典联合自适应学习的稀疏壁画修复

Improved Sparse Mural Restoration Algorithm Using Joint Adaptive Learning of Multiple Dictionaries

陈永 1杜婉君 2赵梦雪2

作者信息

  • 1. 兰州交通大学电子与信息工程学院,甘肃兰州 730070||甘肃省人工智能与图形图像处理工程研究中心,甘肃兰州 730070
  • 2. 兰州交通大学电子与信息工程学院,甘肃兰州 730070
  • 折叠

摘要

Abstract

In repairing murals based on sparse representation,the dictionary construction is single,and the restoration of details is inadequate.Therefore,an improved sparse mural restoration algorithm using joint adaptive learning of multiple dictionaries is proposed.First,a non-subsampled shearlet transform(NSST)is used to perform multi-scale decomposition on the mural image to obtain low-frequency structural components and high-frequency texture components,overcoming the problem of neglecting the differences in texture and structure information in mural restoration using sparse representation.Then,a sparse method of multiple dictionary adaptive learning is proposed.The low-frequency texture image is clustered based on the similarity of features between pixels to construct multiple sparse sub-dictionaries,and the low-frequency component restoration is completed through singular value decomposition and split Bregman iteration optimization.Then,the pulse-coupled neural network mechanism is introduced to restore the high-frequency structural sub-band image of the mural image.Finally,the NSST inverse transform is used to merge and complete the restoration.Experimental results on actual murals show that the proposed algorithm effectively preserves significant information,such as the structure and texture layers of the mural image,and achieves better visual effects and objective evaluations than the compared algorithms.

关键词

壁画修复/非下采样剪切波变换/多重字典/自适应学习/脉冲耦合神经网络

Key words

mural restoration/non-subsampled shearlet transform/multiple dictionaries/adaptive learning/pulse coupled neural network

分类

计算机与自动化

引用本文复制引用

陈永,杜婉君,赵梦雪..改进多重字典联合自适应学习的稀疏壁画修复[J].湖南大学学报(自然科学版),2023,50(12):1-9,9.

基金项目

国家自然科学基金资助项目(61963023),National Natural Science Foundation of China(61963023) (61963023)

教育部人文社会科学研究青年基金资助项目(19YJC760012),Humanities and Social Sciences Youth Foundation of Ministry of Education(19YJC760012) (19YJC760012)

兰州交通大学基础研究拔尖人才项目(2022JC36),Lanzhou Jiaotong University Basic Top-Notch Personnel Project(2022JC36) (2022JC36)

湖南大学学报(自然科学版)

OACSCDCSTPCD

1674-2974

访问量0
|
下载量0
段落导航相关论文