| 注册
首页|期刊导航|河南农业科学|基于无人机影像多源信息的冬小麦生物量与产量估算

基于无人机影像多源信息的冬小麦生物量与产量估算

郭燕 井宇航 贺佳 张会芳 贾德伟 王来刚

河南农业科学2023,Vol.52Issue(12):149-161,13.
河南农业科学2023,Vol.52Issue(12):149-161,13.DOI:10.15933/j.cnki.1004-3268.2023.12.017

基于无人机影像多源信息的冬小麦生物量与产量估算

Winter Wheat Aboveground Biomass and Yield Estimation Based on Multi-Source Information from UAV Imagery

郭燕 1井宇航 2贺佳 1张会芳 2贾德伟 3王来刚1

作者信息

  • 1. 河南省农业科学院 农业信息技术研究所/农业农村部黄淮海智慧农业技术重点实验室,河南 郑州 450002||河南省农作物种植监测与预警工程研究中心,河南 郑州 450002
  • 2. 河南省农业科学院 农业信息技术研究所/农业农村部黄淮海智慧农业技术重点实验室,河南 郑州 450002
  • 3. 河南省乡村产业发展服务中心,河南 郑州 450000
  • 折叠

摘要

Abstract

Winter wheat aboveground biomass is an important indicator to characterize yield,and rapid and non-destructive monitoring of winter wheat aboveground biomass by UAV remote sensing technology can grasp the growth of winter wheat in time,which is of great significance to the estimation of winter wheat yield.In this study,based on the spectral information and texture characteristics of UAV digital orthophoto map(DOM)and plant height(HDSM)extracted by digital surface model(DSM)during the booting,flowering,and filling stages of winter wheat,multiple linear regression(MLR),partial least squares regression(PLSR),and random forest(RF)methods were used to construct the winter wheat aboveground biomass and yield estimation models.The results showed that when using DOM information for winter wheat aboveground biomass estimation,the models constructed by integrating SIs+TFs were better than those constructed by a single spectral index or a texture feature;the accuracy of the winter wheat aboveground biomass estimation model constructed by incorporating HDSM information was improved,the RF model at the flowering stage had the highest accuracy;when incorporating the HDSM information into the aboveground biomass estimation of winter wheat,the accuracy of the estimation model was most obviously improved by TFs+HDSM.In the early estimation of winter wheat yield,the logarithmic function model had the highest accuracy in fitting the measured aboveground biomass to yield,and the R2 of the models for the booting,flowering,and filling stages were 0.87,0.88,and 0.92,respectively.The optimal models for aboveground biomass and yield estimation were coupled to estimate the yield,and the highest accuracy of the estimation model was obtained at the filling stage,with R2,RPD,and RMSE of 0.90,2.77,and 244.61 kg/ha,respectively.Therefore,the integration of multi-source information from UAV imagery and machine learning algorithms,can be used to quickly and efficiently estimate the aboveground biomass and yield of winter wheat,which is of great significance for the accurate formulation of food security policies.

关键词

冬小麦/无人机/数字正射影像/数字表面模型/生物量/产量

Key words

Winter wheat/UAV/Digital orthophoto map(DOM)/Digital surface model(DSM)/Biomass/Yield

分类

农业科技

引用本文复制引用

郭燕,井宇航,贺佳,张会芳,贾德伟,王来刚..基于无人机影像多源信息的冬小麦生物量与产量估算[J].河南农业科学,2023,52(12):149-161,13.

基金项目

国家重点研发计划项目(2022YFD2001105) (2022YFD2001105)

河南省重点研发与推广专项(232102111030,232102110282) (232102111030,232102110282)

河南省农业科学院自主创新项目(2023ZC062) (2023ZC062)

河南省农业科学院农业经济与信息研究所科技创新领军人才培育计划项目(2022KJCX01) (2022KJCX01)

河南农业科学

OA北大核心CSTPCD

1004-3268

访问量0
|
下载量0
段落导航相关论文