| 注册
首页|期刊导航|红外技术|电力线电晕放电紫外图像精确分割方法

电力线电晕放电紫外图像精确分割方法

刘赫 赵天成 刘俊博 矫立新 袁小翠 许志浩

红外技术2023,Vol.45Issue(12):1322-1329,8.
红外技术2023,Vol.45Issue(12):1322-1329,8.

电力线电晕放电紫外图像精确分割方法

New Corona Discharge Segmentation Method for Power Line Based on Ultraviolet Image

刘赫 1赵天成 1刘俊博 1矫立新 1袁小翠 2许志浩2

作者信息

  • 1. 国网吉林省电力有限公司电力科学研究院,吉林 长春 130021
  • 2. 南昌工程学院 电气工程学院,江西 南昌 330099
  • 折叠

摘要

Abstract

Corona discharge images collected with night-type ultraviolet cameras are affected by the photographer's environment and the degree of partial discharge,and the color of the discharge area is not only close to the background but also overlaps with the background,which makes it difficult to automatically segment corona discharge.This paper proposes a coarse-to-fine corona discharge ultraviolet(UV)image segmentation method.First,a deep-learning semantic segmentation model was constructed,and rough segmentation results of the corona discharge were obtained using a trained Unet network.Second,the UV image of the discharge region was converted into a gray image,and the rough segmentation result was accurately segmented based on the Otsu threshold segmentation method with foreground weighting.A total of 426 samples were tested,and all the corona discharge regions in the sample images were segmented using the proposed method.The error between the segmented discharge regions and the true value was close to 0.The proposed corona discharge segmentation method provides accurate data sources for the quantification and evaluation of corona discharges.

关键词

电晕放电/紫外成像/语义分割/Otsu阈值

Key words

corona discharge/ultraviolet imaging/semantic segmentation/Otsu threshold

分类

电子信息工程

引用本文复制引用

刘赫,赵天成,刘俊博,矫立新,袁小翠,许志浩..电力线电晕放电紫外图像精确分割方法[J].红外技术,2023,45(12):1322-1329,8.

基金项目

国网吉林省电力有限公司2022年揭榜挂帅项目(JL2237874846). (JL2237874846)

红外技术

OACSCDCSTPCD

1001-8891

访问量0
|
下载量0
段落导航相关论文