| 注册
首页|期刊导航|华中师范大学学报(自然科学版)|基于最大信息系数的关联性特征选择算法:MICCFS

基于最大信息系数的关联性特征选择算法:MICCFS

罗幼喜 谢昆明 胡超竹 李翰芳

华中师范大学学报(自然科学版)2023,Vol.57Issue(6):777-785,9.
华中师范大学学报(自然科学版)2023,Vol.57Issue(6):777-785,9.DOI:10.19603/j.cnki.1000-1190.2023.06.002

基于最大信息系数的关联性特征选择算法:MICCFS

MICCFS:a correlation-based feature selection algorithm based on maximum information coefficient

罗幼喜 1谢昆明 1胡超竹 1李翰芳1

作者信息

  • 1. 湖北工业大学理学院,武汉 430068
  • 折叠

摘要

Abstract

To solve the problem that the correlation-based feature selection algorithm(CFS)can only recognize the linear relationship of variables for regression tasks and symmetrical uncertainty for classification tasks,a CFS feature selection algorithm based on maximum information coefficient(MIC)(named as MICCFS)is presented.It can replace the linear correlation coefficient between variables and symmetrical uncertainty in the classification task with MIC measure.The feature subset is searched by the best-first search algorithm.We conduct experiments to compare the results of MICCFS,CFS and other commonly used feature selection methods SVMRFE,Lasso,MIM,ReliefF,Chi-Square on eleven real-world datasets for regression and ten datasets for classification from UCI machine learning repository with using support vector machine(SVM),k-nearest neighbor algorithm(k-NN),naive bayes model(NB)and decision tree classifier(DT).The results show that MICCFS is superior to others.

关键词

关联性特征选择/最大信息系数/特征选择/分类/降维

Key words

correlation-based feature selection/maximum information coefficient/feature selection/classification/dimension reduction

分类

数学

引用本文复制引用

罗幼喜,谢昆明,胡超竹,李翰芳..基于最大信息系数的关联性特征选择算法:MICCFS[J].华中师范大学学报(自然科学版),2023,57(6):777-785,9.

基金项目

国家自然科学基金青年项目(11701161) (11701161)

教育部人文社会科学基金项目(17YJA790098) (17YJA790098)

湖北省教育厅人文社会科学重点项目(20D043) (20D043)

湖北工业大学博士启动基金项目(BSQD2020103). (BSQD2020103)

华中师范大学学报(自然科学版)

OACSCDCSTPCD

1000-1190

访问量5
|
下载量0
段落导航相关论文