井冈山大学学报(自然科学版)2023,Vol.44Issue(6):1-6,6.DOI:10.3969/j.issn.1674-8085.2023.06.001
数论函数方程φ(φ(n))=2ω(n)qω(n)的正整数求解
ON THE SOLUTION OF NUMBER THEORY FUNCTION EQUATIONφ(φ(n))=2ω(n)qω(n)
摘要
Abstract
For the solution of the compound equation φ(φ(n))=2ω(n)qω(n)containing the number theory functions φ(n)and ω(n),using the related properties of these two functions,the basic theorem of arithmetic and the congruence property,the idea of classification discussion is adopted to obtain that when q=5 the equation has 8 positive integer solutions;the equation has 44 even solutions when q=3,and this method provides a reference for solving general types of equations in the form of φ(φ(n))=2ω(n)Πti=1qω(n)i.关键词
欧拉函数φ(n)/同余/正整数解/质因数分解Key words
euler function φ(n)/congruence/positive integer solutions/prime factorization分类
数理科学引用本文复制引用
曹颖,杨海,许倩..数论函数方程φ(φ(n))=2ω(n)qω(n)的正整数求解[J].井冈山大学学报(自然科学版),2023,44(6):1-6,6.基金项目
国家自然科学基金项目(11226038,11371012) (11226038,11371012)
陕西省自然科学基金项目(2021JM443) (2021JM443)
陕西省教育厅计划项目(17JK0323) (17JK0323)