| 注册
首页|期刊导航|井冈山大学学报(自然科学版)|数论函数方程φ(φ(n))=2ω(n)qω(n)的正整数求解

数论函数方程φ(φ(n))=2ω(n)qω(n)的正整数求解

曹颖 杨海 许倩

井冈山大学学报(自然科学版)2023,Vol.44Issue(6):1-6,6.
井冈山大学学报(自然科学版)2023,Vol.44Issue(6):1-6,6.DOI:10.3969/j.issn.1674-8085.2023.06.001

数论函数方程φ(φ(n))=2ω(n)qω(n)的正整数求解

ON THE SOLUTION OF NUMBER THEORY FUNCTION EQUATIONφ(φ(n))=2ω(n)qω(n)

曹颖 1杨海 1许倩1

作者信息

  • 1. 西安工程大学理学院,陕西,西安 710048
  • 折叠

摘要

Abstract

For the solution of the compound equation φ(φ(n))=2ω(n)qω(n)containing the number theory functions φ(n)and ω(n),using the related properties of these two functions,the basic theorem of arithmetic and the congruence property,the idea of classification discussion is adopted to obtain that when q=5 the equation has 8 positive integer solutions;the equation has 44 even solutions when q=3,and this method provides a reference for solving general types of equations in the form of φ(φ(n))=2ω(n)Πti=1qω(n)i.

关键词

欧拉函数φ(n)/同余/正整数解/质因数分解

Key words

euler function φ(n)/congruence/positive integer solutions/prime factorization

分类

数理科学

引用本文复制引用

曹颖,杨海,许倩..数论函数方程φ(φ(n))=2ω(n)qω(n)的正整数求解[J].井冈山大学学报(自然科学版),2023,44(6):1-6,6.

基金项目

国家自然科学基金项目(11226038,11371012) (11226038,11371012)

陕西省自然科学基金项目(2021JM443) (2021JM443)

陕西省教育厅计划项目(17JK0323) (17JK0323)

井冈山大学学报(自然科学版)

1674-8085

访问量0
|
下载量0
段落导航相关论文