| 注册
首页|期刊导航|井冈山大学学报(自然科学版)|基于多分支空洞卷积与自适应特征融合的FCOS目标检测算法

基于多分支空洞卷积与自适应特征融合的FCOS目标检测算法

刘糠继 时培成 齐恒 杨爱喜

井冈山大学学报(自然科学版)2023,Vol.44Issue(6):75-83,9.
井冈山大学学报(自然科学版)2023,Vol.44Issue(6):75-83,9.DOI:10.3969/j.issn.1674-8085.2023.06.010

基于多分支空洞卷积与自适应特征融合的FCOS目标检测算法

FCOS OBJECT DETECTION ALGORITHM BASED ON MULTI-BRANCH ATROUS CONVOLUTION AND ADAPTIVE FEATURE FUSION

刘糠继 1时培成 1齐恒 1杨爱喜2

作者信息

  • 1. 安徽工程大学机械工程学院,安徽,芜湖 241000
  • 2. 浙江大学工程师学院,浙江,杭州 310000
  • 折叠

摘要

Abstract

Object detection technology based on deep learning has been widely used in the fields of autonomous driving and robot vision.For this task,FCOS(fully convolutional one-stage object detection)uses full convolution and anchor-free method to achieve pixel-by-pixel object detection,but the original FCOS still has the problems as insufficient image feature extraction,insufficient global feature information acquisition and unsatisfactory feature fusion.Therefore,this paper improves FCOS and applies it to image multi-object detection.First,this paper uses ResNeSt50 instead of the original backbone ResNet50 to improve the feature extraction capability of the backbone by combining feature-map attention and multi-path representation.Then,a Receptive Field Enhancement Module(RFEM)is constructed based on multi-branch dilated convolutions to obtain more comprehensive global context information.Finally,based on the original FCOS feature fusion,this paper designs an Adaptive Recombination Feature Fusion Module(ARFFM),which efficiently fuses the semantic information of high-level feature maps and the detail information of low-level feature maps.Experiments on the PASCAL VOC2007 dataset show that the improved FCOS achieves a mean precision mean(mAP)of 81.2%,a 2.9%improvement over the original FCOS algorithm,and exhibits state-of-the-art performance on most classes.At the same time,extensive ablation experiments are carried out in this paper,in which the ResNeSt50,RFEM,and ARFFM modules bring 1.2%,2.1%,and 2.9%of the baseline network respectively,these improvements provide a new solution for the detection of small objects and occluded objects.

关键词

目标检测/无锚方法/主干网络/空洞卷积/特征融合

Key words

object detection/anchor free method/backbone/atrous convolution/feature fusion

分类

信息技术与安全科学

引用本文复制引用

刘糠继,时培成,齐恒,杨爱喜..基于多分支空洞卷积与自适应特征融合的FCOS目标检测算法[J].井冈山大学学报(自然科学版),2023,44(6):75-83,9.

基金项目

国家自然科学基金面上项目(51575001) (51575001)

安徽省重点研究与开发计划项目(202104a05020003) (202104a05020003)

安徽省自然科学基金项目(2208085MF173) (2208085MF173)

井冈山大学学报(自然科学版)

1674-8085

访问量0
|
下载量0
段落导航相关论文