| 注册
首页|期刊导航|计算机应用与软件|基于改进的Stacking集成模型的容器云负载预测研究

基于改进的Stacking集成模型的容器云负载预测研究

梁荣华 谢晓兰 翟青海 张启明

计算机应用与软件2023,Vol.40Issue(12):48-55,100,9.
计算机应用与软件2023,Vol.40Issue(12):48-55,100,9.DOI:10.3969/j.issn.1000-386x.2023.12.008

基于改进的Stacking集成模型的容器云负载预测研究

CONTAINER CLOUD LOAD FORECASTING BASED ON IMPROVED STACKING ENSEMBLE MODEL

梁荣华 1谢晓兰 1翟青海 1张启明1

作者信息

  • 1. 桂林理工大学信息科学与工程学院 广西 桂林 541006
  • 折叠

摘要

Abstract

With the rapid development of container cloud,the volume of business increases rapidly,so it is a reasonable way to forecast the future trend of container resource utilization and allocate resources in advance to improve the utilization rate of resources and reduce the waste of resources.In order to realize reasonable prediction of container cloud resources,a cloud resource load prediction model based on the improved Stacking ensemble method is proposed.The first stage of the model was to set up a base learner to select the features of cloud resource load data and reduce the complexity of the features of the data set.The second stage was to use the DBN model improved by GA-BP neural network,which named DBN-GA-BP,to carry out integrated prediction of the feature selection data in the first stage.The experimental results show that the model has higher prediction accuracy compared with the single model and the unimproved Stacking model.

关键词

Stacking集成模型/遗传算法/深度信念网络/云资源/资源预测

Key words

Stacking ensemble model/Genetic algorithm/Deep belief nets/Cloud resource/Resource prediction

分类

信息技术与安全科学

引用本文复制引用

梁荣华,谢晓兰,翟青海,张启明..基于改进的Stacking集成模型的容器云负载预测研究[J].计算机应用与软件,2023,40(12):48-55,100,9.

基金项目

国家自然科学基金项目(61762031) (61762031)

广西科技重大专项(桂科AA19046004) (桂科AA19046004)

广西重点研发项目(桂科AB18126006). (桂科AB18126006)

计算机应用与软件

OA北大核心CSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文