| 注册
首页|期刊导航|计算机应用与软件|基于改进的YOLOv3多目标小尺度车辆检测算法研究

基于改进的YOLOv3多目标小尺度车辆检测算法研究

田智慧 杨奇文 魏海涛

计算机应用与软件2023,Vol.40Issue(12):169-175,7.
计算机应用与软件2023,Vol.40Issue(12):169-175,7.DOI:10.3969/j.issn.1000-386x.2023.12.025

基于改进的YOLOv3多目标小尺度车辆检测算法研究

MULTI-TARGET SMALL-SCALE VEHICLE DETECTION ALGORITHM BASED ON IMPROVED YOLOV3

田智慧 1杨奇文 2魏海涛3

作者信息

  • 1. 郑州大学信息工程学院 河南 郑州 450001||郑州大学地球科学与技术学院 河南 郑州 450052
  • 2. 郑州大学信息工程学院 河南 郑州 450001
  • 3. 郑州大学地球科学与技术学院 河南 郑州 450052
  • 折叠

摘要

Abstract

Aimed at the problems of low efficiency of traditional vehicle detection algorithms,high missed detection rate,and poor detection of small target vehicles,an improved YOLOv3 vehicle detection algorithm is proposed.K-means++was used to cluster the training tags to determine the Anchor box for vehicle detection.EfficientNet was used with stronger feature extraction capabilities as the feature network,and 4 feature scales were used to fuse deep semantic information and shallow position information thus improving the detection efficiency of small-scale vehicles.CIoU and Focal loss functions were introduced to improve the network convergence speed and detection accuracy.Experimental results show that on the UA-DETRAC and self-built data sets,the MAP,Recall and FPS of the proposed algorithm reach 90.9%,88.3%and 30 frames per second respectively,which improves the detection accuracy of small target vehicle.

关键词

车辆检测/YOLOv3/深度学习/EfficientNet

Key words

Vehicle detetection/YOLOv3/Deep learning/EfficientNet

分类

信息技术与安全科学

引用本文复制引用

田智慧,杨奇文,魏海涛..基于改进的YOLOv3多目标小尺度车辆检测算法研究[J].计算机应用与软件,2023,40(12):169-175,7.

基金项目

国家重点研发计划项目(2018YFB0505004-03). (2018YFB0505004-03)

计算机应用与软件

OA北大核心CSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文