| 注册
首页|期刊导航|机电工程技术|基于神经网络的超声波焊接功率预测方法

基于神经网络的超声波焊接功率预测方法

周俊雄 周明欧 范鹏 卢其辉

机电工程技术2023,Vol.52Issue(12):23-26,85,5.
机电工程技术2023,Vol.52Issue(12):23-26,85,5.DOI:10.3969/j.issn.1009-9492.2023.12.006

基于神经网络的超声波焊接功率预测方法

Power Prediction Method of Ultrasonic Welding Machine Based on Neural Network

周俊雄 1周明欧 1范鹏 1卢其辉1

作者信息

  • 1. 广东省智能化锂电池制造装备企业重点实验室,广东惠州 516000||广东利元亨智能装备股份有限公司,广东惠州 516000
  • 折叠

摘要

Abstract

Because the ultrasonic welding process has nonlinear time-varying characteristics,the traditional control method is no longer suitable for the accurate control of active power,but the neural network algorithm is more applicable to this scenario because it does not rely on specific mathematical models and can solve the mapping relationship between multiple variables and multiple objects.Therefore,two neural network models to predict ultrasonic welding power are designed and trained with welding data in real engineering.The results show that by using the two neural network models,the ultrasonic welding power can be predict accurately,and the loss of training verification sets of both models can be reduced to less than 10-2.Comparing the two training results,it can also be found that the training verification set of the predictive model based on convolutional neural network has less loss,better prediction effect,stronger model generalization ability and more robustness,and can be used as the preferred algorithm for power prediction in ultrasonic metal welding power control.

关键词

超声波焊接/神经网络/预测

Key words

ultrasonic welding/neural network/prediction

分类

通用工业技术

引用本文复制引用

周俊雄,周明欧,范鹏,卢其辉..基于神经网络的超声波焊接功率预测方法[J].机电工程技术,2023,52(12):23-26,85,5.

基金项目

国家重点研发计划(2022YFB4702500) (2022YFB4702500)

机电工程技术

1009-9492

访问量0
|
下载量0
段落导航相关论文