| 注册
首页|期刊导航|南方电网技术|计及转折性天气过程识别与检验的短期风电功率预测

计及转折性天气过程识别与检验的短期风电功率预测

王勃 冯双磊 刘晓琳 王钊

南方电网技术2023,Vol.17Issue(12):52-62,11.
南方电网技术2023,Vol.17Issue(12):52-62,11.DOI:10.13648/j.cnki.issn1674-0629.2023.12.007

计及转折性天气过程识别与检验的短期风电功率预测

Short-Term Wind Power Prediction Considering Identification and Testing of Transitional Weather Processes

王勃 1冯双磊 1刘晓琳 2王钊1

作者信息

  • 1. 新能源与储能运行控制国家重点实验室,中国电力科学研究院有限公司,北京 100192
  • 2. 电力气象国家电网有限公司联合实验室,北京 100192
  • 折叠

摘要

Abstract

In order to enhance the significance of numerical weather prediction(NWP)for short-term wind power prediction and take into account the influence of transitional weather processes on power prediction,a short-term wind power prediction method consider-ing identification and testing of transitional weather processes is proposed.The samples with NWP interval 15 min of the time series are identified using a gated recurrent unit(GRU)based classifier for transitional weather processes.Based on the identification results,the wind speed series of transitional weather processes are tested by method for object-based on diagnostic evaluation(MODE),and the NWP forecasting regularity is explored.Based on the results of weather process identification for the time period to be predicted,matching weather processes,different models are selected for short-term wind power prediction.The proposed method is applied to a wind farm in Jilin,China,for arithmetic validation.The results show that the transitional weather process identification method has a high identification accuracy.The average reductions of RMSE value by 2.77%and MAE value by 2.46%for all types of weather process conditions prove the effectiveness of the method.

关键词

转折性天气过程识别/MODE空间检验/NWP预报规律性挖掘/短期风电功率预测

Key words

identification of transitional weather processes/MODE spatial examination/NWP forecast regularity mining/short-term wind power prediction

分类

信息技术与安全科学

引用本文复制引用

王勃,冯双磊,刘晓琳,王钊..计及转折性天气过程识别与检验的短期风电功率预测[J].南方电网技术,2023,17(12):52-62,11.

基金项目

中国电力科学研究院有限公司长线攻关项目(人工智能与物理机理相结合的新一代数值预报模式研究)(NY83-22-004). Supported by the Long Term Key Project of China Electric Power Research Institute(NY83-22-004). (人工智能与物理机理相结合的新一代数值预报模式研究)

南方电网技术

OA北大核心CSCDCSTPCD

1674-0629

访问量0
|
下载量0
段落导航相关论文