基于GNSS的长江下游带状区域高程拟合方法研究OA
该文旨在研究沿长江大范围带状区域中,GNSS点高程拟合方法的问题,列举二次多项式、BP神经网络拟合 2 种高程拟合方法,对 2 种拟合方法在长江下游同一个大范围带状区域的高程拟合结果进行对比分析.结果表明,针对该文大范围带状区域,在均匀布设的GNSS点位下,2 种拟合方式计算结果误差基本一致,且BP神经网络拟合进行高程拟合获得较高的内外符合精度,方法具有较好的可塑性和更强的泛化能力.该文研究成果可为相关领域提供参考.
This paper aims to investigate the issue of GNSS point elevation fitting methods in a large-scale belt-shaped region along the Yangtze River.Two elevation fitting methods,namelyquadratic polynomial and BP neural network fitting,are examined,and a comparative analysis is conducted on the elevation fitting results in the same large-scale belt-shaped region downstream of the Yangtze River.The results indicate that for the wide belt-shaped region considered in this paper,under the condition of evenly distributed GNSS points,both fitting methods yield similar calculation errors.Besides,the BP neural network fitting achieves higher accuracy in terms of internal and external conformity,demonstrating better adaptability and stronger generalization ability.The findings of this study can provide reference for related fields..
高尚;金犇;郭凯
长江水利委员会水文局长江下游水文水资源勘测局,南京 210011
测绘与仪器
长江下游带状区域高程异常高程拟合二次曲面拟合BP神经网络
lower reaches of the Yangtze Riverbelt-shapedelevation anomalyelevation fittingQuadratic fittingBP neural network
《科技创新与应用》 2024 (002)
16-19 / 4
评论