| 注册
首页|期刊导航|水力发电学报|水泵水轮机复杂振动信号特征提取与智能识别

水泵水轮机复杂振动信号特征提取与智能识别

张苏祺 李浩 张宇宁 郑祥豪 丁海民 李金伟

水力发电学报2023,Vol.42Issue(12):70-78,9.
水力发电学报2023,Vol.42Issue(12):70-78,9.DOI:10.11660/slfdxb.20231207

水泵水轮机复杂振动信号特征提取与智能识别

Feature extraction and intelligent recognition of complicated vibration signals of pump turbine

张苏祺 1李浩 1张宇宁 1郑祥豪 2丁海民 3李金伟4

作者信息

  • 1. 华北电力大学 电站能量传递转化与系统教育部重点实验室,北京 102206
  • 2. 华北电力大学 电站能量传递转化与系统教育部重点实验室,北京 102206||福州大学 电气工程与自动化学院,福州 350108
  • 3. 华北电力大学 电站能量传递转化与系统教育部重点实验室,北京 102206||华北电力大学 河北省电力机械装备健康维护与失效预防重点实验室,河北 保定 071003
  • 4. 中国水利水电科学研究院,北京 100048
  • 折叠

摘要

Abstract

Feature extraction and intelligent recognition of the vibration signals of pump turbines are significant to reliable and safe operation of a pumped storage power station.Due to its complicated operational conditions,a pump turbine in operation can create a large number of physical sources that excite its vibrations,and the frequency components of the vibration signals are quite complicated.The traditional methods suffer a poor accuracy of feature extraction from a complicated vibration signal.To improve the accuracy,this paper describes a new model of feature extraction and intelligent recognition of the vibration signals,based on the variational mode decomposition(VMD),bubble entropy(BE),and long short-term memory(LSTM)neural network.First,this method analyzes the vibration signal using VMD and obtains several modes.Then for each mode,its BE value is calculated and a BE eigenvector is constructed.Finally,the eigenvectors of the vibration signal are trained and recognized using a LSTM neural network.We have verified the method against the complicated vibration signals measured at the top cover of a pump turbine at the Pushihe pumped storage station,and achieved a signal recognition accuracy of 97.87%,indicating its important engineering application value.

关键词

水泵水轮机/振动信号/变分模态分解/气泡熵/长短时记忆神经网络

Key words

pump turbine/vibration signal/variational mode decomposition/bubble entropy/long short-term memory

分类

能源科技

引用本文复制引用

张苏祺,李浩,张宇宁,郑祥豪,丁海民,李金伟..水泵水轮机复杂振动信号特征提取与智能识别[J].水力发电学报,2023,42(12):70-78,9.

基金项目

国家自然科学基金(51976056) (51976056)

水力发电学报

OA北大核心CSCDCSTPCD

1003-1243

访问量0
|
下载量0
段落导航相关论文