| 注册
首页|期刊导航|石油地球物理勘探|基于多尺度增强级联残差网络的DAS地震资料背景噪声衰减方法

基于多尺度增强级联残差网络的DAS地震资料背景噪声衰减方法

钟铁 王玮钰 王伟 董士琦 卢绍平 董新桐

石油地球物理勘探2023,Vol.58Issue(6):1332-1342,11.
石油地球物理勘探2023,Vol.58Issue(6):1332-1342,11.DOI:10.13810/j.cnki.issn.1000-7210.2023.06.005

基于多尺度增强级联残差网络的DAS地震资料背景噪声衰减方法

Background noise attenuation method of DAS seismic data based on multiscale enhanced cascade residual network

钟铁 1王玮钰 2王伟 3董士琦 1卢绍平 4董新桐5

作者信息

  • 1. 现代电力系统仿真控制与绿色电能新技术教育部重点实验室,吉林吉林 132012||东北电力大学电气工程学院,吉林吉林 132012
  • 2. 国网四川省电力公司资阳供电公司,四川资阳 641300
  • 3. 中国石油勘探开发研究院西北分院,甘肃兰州 730020
  • 4. 中山大学地球科学与工程学院,广东广州 510275
  • 5. 吉林大学仪器科学与电气工程学院,吉林长春 130026
  • 折叠

摘要

Abstract

Seismic records collected through distributed optical fiber acoustic sensing(DAS)typically exhibit a low signal-to-noise ratio(SNR)due to the pervasive influence of complex and intense background noise.How to effec-tively suppress background noise,restore weak upgoing reflection information,and substantially improve the SNR of DAS records havs become a prominent challenge in seismic data processing.To address the issue of complex DAS background noise attenuation,this paper proposes a multiscale enhanced cascade residual network(MECRN),which employs a dual-path cascade residual network structure to extract shallow information from DAS records.On this basis,dilated convolutional layers and multiscale modules are introduced to extract the multiscale features existing in DAS records.Additionally,skip connections are introduced to import shallow features,which enhances the feature extraction capability of MECRN and avoids effective feature loss.Finally,the local and global features are integrated by residual learning,and the reconstructed features are refined to improve the denoising capabilities of MECRN.The processing results from both simulated and field DAS data demonstrate that MECRN can effectively suppresses complex DAS background noise and accurately restores weak reflection signals,which enhances the processing ca-pacity of DAS data significantly.

关键词

分布式光纤声学传感(DAS)/复杂背景噪声/多尺度增强级联残差网络/低信噪比/噪声衰减

Key words

distributed optical fiber acoustic sensing(DAS)/complex background noise/multiscale enhanced cas-cade residual network/low signal-to-noise ratio/noise attenuation

分类

地质学

引用本文复制引用

钟铁,王玮钰,王伟,董士琦,卢绍平,董新桐..基于多尺度增强级联残差网络的DAS地震资料背景噪声衰减方法[J].石油地球物理勘探,2023,58(6):1332-1342,11.

基金项目

本项研究受国家自然科学青年基金项目"基于多尺度可迁移深度学习方法的多井DAS地震数据"智普"消噪技术研究"(42204114)、第6批博士后创新人才支持计划项目"基于对抗式深度学习策略的DAS地震资料智能消噪系统构建"(BX2021111)、吉林省科技厅面上基金项目"基于深度学习框架的复杂地震勘探资料智能消噪技术研究"(20220101190JC)、中国石油天然气集团公司前瞻性基础性项目"物探岩石物理与前沿储备技术研究"(2021DJ3505)及中国石油股份公司科技项目"川南页岩气开发区应力变化、构造活化与可能诱发地震机理研究"(2022DJ8004)联合资助. (42204114)

石油地球物理勘探

OACSCDCSTPCD

1000-7210

访问量0
|
下载量0
段落导航相关论文