| 注册
首页|期刊导航|同济大学学报(自然科学版)|面向多维特性数据的缺失值检测及填补方法对比

面向多维特性数据的缺失值检测及填补方法对比

乔非 翟晓东 王巧玲

同济大学学报(自然科学版)2023,Vol.51Issue(12):1972-1982,11.
同济大学学报(自然科学版)2023,Vol.51Issue(12):1972-1982,11.DOI:10.11908/j.issn.0253-374x.22166

面向多维特性数据的缺失值检测及填补方法对比

Comparison of Imputation Methods Based on Missing Value Detection for Multidimensional Feature Data

乔非 1翟晓东 1王巧玲1

作者信息

  • 1. 同济大学 电子与信息工程学院,上海 201804
  • 折叠

摘要

Abstract

Aiming at the problems that traditional missing value detection methods are not comprehensive enough to analyze the multidimensional feature data and it is difficult to select the most appropriate missing value algorithm among numerous methods,this paper first designs a missing value detection method and then proposes three different concepts of missing degree to achieve the comprehensive detection of the data with multidimensional features.On this basis,it compares and analyzes the performance of different missing value imputation methods.The results show that the proposed detection method can evaluate the data with multidimensional features effectively and provide basis for the selection of missing value imputation methods.

关键词

数据预处理/缺失值检测/缺失度/缺失值填补方法

Key words

data preprocessing/missing value detection/missing degree/missing value imputation methods

分类

信息技术与安全科学

引用本文复制引用

乔非,翟晓东,王巧玲..面向多维特性数据的缺失值检测及填补方法对比[J].同济大学学报(自然科学版),2023,51(12):1972-1982,11.

基金项目

科技创新 2030"新一代人工智能"重大项目(2018AAA0101704) (2018AAA0101704)

国家自然科学基金(62133011,61973237,61873191) (62133011,61973237,61873191)

同济大学学报(自然科学版)

OA北大核心CSCDCSTPCD

0253-374X

访问量0
|
下载量0
段落导航相关论文