|国家科技期刊平台
首页|期刊导航|土木与环境工程学报(中英文)|基于卷积神经网络的预制叠合板多目标智能化检测方法

基于卷积神经网络的预制叠合板多目标智能化检测方法OACSTPCD

Multi-target intelligent detection method of prefabricated laminated board based on convolutional neural network

中文摘要英文摘要

在生产过程中,预制构件尺寸不合格问题将导致其在施工现场无法顺利安装,从而影响工期.为推进预制构件智能化生产的进程,以预制叠合板为例,基于卷积神经网络研究生产过程中的智能检测方法,在生产流水线上设计并安装图像采集系统,建立预制叠合板尺寸检测数据集.通过YOLOv5算法实现对混凝土底板、预埋PVC线盒及外伸钢筋的识别,并以固定磁盒作为基准参照物进行尺寸检测误差分析,实现混凝土底板尺寸、预埋PVC线盒坐标的检测,在降低训练数据集参数规模的工况下保持较高的识别精度.结果表明:该方法可以有效检测预制叠合板的底板数量和尺寸、预埋PVC线盒数量和坐标,并实现弯折方向不合格的外伸钢筋检测,并能降低人工成本,提高检测精度,加快检测速度,提高预制叠合板的出厂质量.

The unqualified size of prefabricated component in the production process will lead to the failure of the installation on the construction site,and affect the construction period.In order to promote the process of intelligent production of prefabricated components.Based on a convolutional neural network,the prefabricated laminated board is used as an example to study the intelligent detection method of the production process.Design and install an image acquisition system on the production line,establish a prefabricated laminated board detection data set,and use the YOLOv5 algorithm to detect the concrete plate,the embedded PVC junction box and the overhanging steel bar.The fixed magnetic box is used as the benchmark to analyze the detection error of the dimension of the concrete plate and the coordinate of the embedded PVC junction box,and maintains a high recognition accuracy with a smaller parameter scale of the training data set.The result shows that the method can effectively detect the number and dimension of the concrete plate,the number and coordinate of the embedded PVC junction box,and detect the overhanging steel bar of unqualified bending direction.The method can reduce labor costs,improve detection accuracy,speed up detection process,and improve the delivery quality of prefabricated laminated board.

姚刚;廖港;杨阳;李青泽;魏伏佳

重庆大学山地城镇建设与新技术教育部重点实验室||土木工程学院,重庆 400045中机中联工程有限公司,重庆 400050

土木建筑

预制叠合板多目标检测卷积神经网络预制构件智能化生产

prefabricated laminated boardmulti-target detectionconvolutional neural networkprefabricated componentintelligent production

《土木与环境工程学报(中英文)》 2024 (001)

93-101 / 9

国家重点研发计划(2019YFD1101005)National Key R & D Program of China(No.2019YFD1101005)

10.11835/j.issn.2096-6717.2022.026

评论