| 注册
首页|期刊导航|土木与环境工程学报(中英文)|基于机器学习的高强钢焊接等截面箱型柱整体稳定性预测方法

基于机器学习的高强钢焊接等截面箱型柱整体稳定性预测方法

张营营 徐浩 陈培见 马俊 周祎

土木与环境工程学报(中英文)2024,Vol.46Issue(1):182-193,12.
土木与环境工程学报(中英文)2024,Vol.46Issue(1):182-193,12.DOI:10.11835/j.issn.2096-6717.2022.131

基于机器学习的高强钢焊接等截面箱型柱整体稳定性预测方法

Machine learning method for overall stability of welded constant section box columns made of high strength steel

张营营 1徐浩 2陈培见 2马俊 3周祎4

作者信息

  • 1. 中国矿业大学力学与土木工程学院,江苏徐州 221116||中国矿业大学江苏省土木工程环境灾变与结构可靠性重点实验室,江苏徐州 221116
  • 2. 中国矿业大学力学与土木工程学院,江苏徐州 221116
  • 3. 中国建筑第八工程局有限公司南方分公司,广东深圳 518035
  • 4. 西南交通大学土木工程学院,成都 610031
  • 折叠

摘要

Abstract

At present,finite element modeling or laboratory testing methods are generally used in the research of the overall stability of high-strength steel members.However,the prediction method based on machine learning(ML)has greatly improved the accuracy and convenience of component performance prediction.To accurately predict the overall stability of welded constant section box columns made of high strength steel,ML method together with a database based on the fiber model is proposed in this paper.Firstly,the input and output parameters of the model are determined,and the database is provided.Then,three different ML models and empirical models in the existing specifications are selected for prediction,and the performance is compared according to the evaluation index.Finally,the rationality of ML models is analyzed according to interpretable algorithms.The results show that the prediction results of most ML models are in good agreement with the experimental results,which are slightly higher than the empirical models,and the Gaussian process regression model has the best prediction performance for the overall stability of high-strength steel members;the influential trend of various parameters on the overall stability of components meets the expectation,which verifies the rationality and reliability of the ML model;the regularized slenderness ratio has the greatest influence on the prediction results,while the initial defects have the least.

关键词

机器学习/高强钢/整体稳定性/预测模型/纤维模型

Key words

machine learning/high-strength steel/overall stability/prediction model/fiber model

分类

建筑与水利

引用本文复制引用

张营营,徐浩,陈培见,马俊,周祎..基于机器学习的高强钢焊接等截面箱型柱整体稳定性预测方法[J].土木与环境工程学报(中英文),2024,46(1):182-193,12.

基金项目

国家自然科学基金(52278229)National Natural Science Foundation of China(No.52278229) (52278229)

土木与环境工程学报(中英文)

OA北大核心CSTPCD

2096-6717

访问量0
|
下载量0
段落导航相关论文