| 注册
首页|期刊导航|计算机技术与发展|基于多掩码与提示句向量融合分类的立场检测

基于多掩码与提示句向量融合分类的立场检测

王正佳 李霏 姬东鸿 滕冲

计算机技术与发展2023,Vol.33Issue(12):156-162,7.
计算机技术与发展2023,Vol.33Issue(12):156-162,7.DOI:10.3969/j.issn.1673-629X.2023.12.022

基于多掩码与提示句向量融合分类的立场检测

Stance Detection Based on Multi-mask and Prompt Sentence Vector Fusion Classification

王正佳 1李霏 1姬东鸿 1滕冲1

作者信息

  • 1. 武汉大学 国家网络安全学院 空天信息安全与可信计算教育部重点实验室,湖北 武汉 430072
  • 折叠

摘要

Abstract

Stance detection refers to the analysis of the stance expressed by the text on a target topic,which usually includes support,against and none.Existing works mostly use methods such as BERT to extract sentence feature vectors of the text and topic,and usually,the first token hidden state or the average of the hidden states of each word in the sentence is used as the sentence vector.We improve the acquisition of sentence vectors by using prompt learning templates to obtain prompt sentence vectors and enhance the feature extraction effect of sentence vectors.A stance detection model based on multiple masks and prompt sentence vector fusion classification is designed,which combines prompt sentence vector classification with the template-verbalizer structure of prompt learning classification with multiple masks,introducing text,topic,and stance words information into sentence vectors,fusing sentence vectors and verbalizer classification results,and jointly optimizing the model.Experiments on the NLPCC Chinese stance detection dataset show that in the ex-periments of training separate models for five topics,the proposed method is superior or comparable to the previous best method in three targets,achieving a total F1 value of 79.3,which is close to the best method.The advantage of prompt sentence vectors is verified in the sentence vector comparison experiment.

关键词

立场检测/深度学习/提示学习/句向量/多掩码

Key words

stance detection/deep learning/prompt learning/sentence vector/multi-mask

分类

信息技术与安全科学

引用本文复制引用

王正佳,李霏,姬东鸿,滕冲..基于多掩码与提示句向量融合分类的立场检测[J].计算机技术与发展,2023,33(12):156-162,7.

基金项目

国家自然科学基金(62176187) (62176187)

计算机技术与发展

OACSTPCD

1673-629X

访问量0
|
下载量0
段落导航相关论文