| 注册
首页|期刊导航|物联网学报|基于STM32的农业物联网病虫害图像识别算法研究

基于STM32的农业物联网病虫害图像识别算法研究

许柏涛 陈翔

物联网学报2023,Vol.7Issue(4):132-141,10.
物联网学报2023,Vol.7Issue(4):132-141,10.DOI:10.11959/j.issn.2096-3750.2023.00365

基于STM32的农业物联网病虫害图像识别算法研究

Research on agricultural IoT pest and disease image recognition algorithm based on STM32

许柏涛 1陈翔1

作者信息

  • 1. 中山大学电子与信息工程学院,广东 广州 510006
  • 折叠

摘要

Abstract

In modern agriculture IoT systems,edge computing is an indispensable component.In this context,it is feasi-ble to deploy lightweight pest and disease image recognition tasks on edge devices.However,due to the constraints of device computation and storage capabilities,this task faces significant challenges.To address these challenges,an eco-nomically practical method was proposed for pest and disease image recognition on STM32 edge devices.Specifically,the MobileNetv2 structure was improved to better suit the characteristics of STM32,quantization-aware training tech-nique was used to compresses the network,model portability was enhanced.Meanwhile,the X-CUBE-AI was used to ar-range the model and evaluate the performance.Experimental results demonstrate that the proposed model not only en-sures image classification accuracy but also reduces the Flash and RAM resource consumption on STM32 compared to other lightweight networks.

关键词

农业物联网/边缘计算/病虫害识别/STM32

Key words

agricultural IoT/edge computing/pest and disease recognition/STM32

分类

信息技术与安全科学

引用本文复制引用

许柏涛,陈翔..基于STM32的农业物联网病虫害图像识别算法研究[J].物联网学报,2023,7(4):132-141,10.

基金项目

广东省现代农业产业技术创新团队专项基金资助项目(No.2023KJ122)The Guangdong Provincial Special Fund for Modern Agriculture Industry Technology Innovation Teams(No.2023KJ122) (No.2023KJ122)

物联网学报

OACSTPCD

2096-3750

访问量0
|
下载量0
段落导航相关论文