| 注册
首页|期刊导航|物联网学报|基于CNN-BiGRU的复杂连续人体活动Wi-Fi感知方法

基于CNN-BiGRU的复杂连续人体活动Wi-Fi感知方法

刘洋 董安明 禹继国 赵恺 周酉

物联网学报2023,Vol.7Issue(4):153-167,15.
物联网学报2023,Vol.7Issue(4):153-167,15.DOI:10.11959/j.issn.2096-3750.2023.00360

基于CNN-BiGRU的复杂连续人体活动Wi-Fi感知方法

A Wi-Fi sensing method for complex continuous human activities based on CNN-BiGRU

刘洋 1董安明 2禹继国 3赵恺 4周酉5

作者信息

  • 1. 齐鲁工业大学(山东省科学院)山东省计算中心(国家超级计算济南中心)算力互联网与信息安全教育部重点实验室,山东 济南 250353||齐鲁工业大学(山东省科学院)计算机科学与技术学院,山东 济南 250353
  • 2. 齐鲁工业大学(山东省科学院)山东省计算中心(国家超级计算济南中心)算力互联网与信息安全教育部重点实验室,山东 济南 250353||齐鲁工业大学(山东省科学院)计算机科学与技术学院,山东 济南 250353||齐鲁工业大学(山东省科学院)大数据研究院,山东 济南 250353
  • 3. 齐鲁工业大学(山东省科学院)大数据研究院,山东 济南 250353||山东省基础科学研究中心(计算机科学)山东省计算机网络重点实验室,山东 济南 250353
  • 4. 中国科学院自动化研究所,北京 100190
  • 5. 山东海看新媒体研究院有限公司,山东 济南 250013
  • 折叠

摘要

Abstract

Human activity sensing based on Wi-Fi channel state information(CSI)has an important application prospect in future intelligent interaction scenarios such as virtual reality,intelligent games,and the metaverse.Accurate sensing of complex and continuous human activities is an important challenge for Wi-Fi sensing.Convolutional neural network(CNN)has the ability of spatial feature extraction but is poor at modeling the temporal features of the data.While long short-term memory(LSTM)network or gated recurrent unit(GRU)network,which are suitable for modeling time-series data,neglect learning spatial features of data.In order to solve this problem,an improved CNN that integrates bidirec-tional gated recurrent unit(BiGRU)network was proposed.The bi-directional feature extraction ability of BiGRU was used to capture the correlation and dependence of the front and back information in the time series data.The extraction of the spatiotemporal features of the time series CSI data was realized,and then the mapping relationship between the action and the CSI data was present.Thus the recognition accuracy of the complex continuous action was improved.The pro-posed network structure was tested with basketball actions.The results show that the recognition accuracy of this method is above 95%under various conditions.Compared with the traditional multi-layer perceptron(MLP),CNN,LSTM,GRU,and attention based bidirectional long short-term memory(ABLSTM)baseline methods,the recognition accuracy has been improved by 1%~20%.

关键词

信道状态信息/人体活动感知/复杂连续活动/卷积神经网络/双向门控循环单元

Key words

channel state information/human activity sensing/complex continuous action/convolutional neural network/bidirectional gated recurrent unit

分类

信息技术与安全科学

引用本文复制引用

刘洋,董安明,禹继国,赵恺,周酉..基于CNN-BiGRU的复杂连续人体活动Wi-Fi感知方法[J].物联网学报,2023,7(4):153-167,15.

基金项目

国家重点研发计划(No.2019YFB2102600) (No.2019YFB2102600)

国家自然科学基金资助项目(No.61701269,No.62272256) (No.61701269,No.62272256)

山东省科技型中小企业创新能力提升工程(No.2022TSGC2180,No.2022TSGC2123) (No.2022TSGC2180,No.2022TSGC2123)

济南市"高校 20 条"自主培养创新团队项目(No.202228093) (No.202228093)

齐鲁工业大学(山东省科学院)科教产融合试点工程项目(基础研究类)先导项目(No.2022XD001) (山东省科学院)

齐鲁工业大学(山东省科学院)计算机科学与技术学科基础研究加强计划(No.2021JC02014)The National Key Research and Development Program(No.2019YFB2102600),The National Natural Science Foundation of China(No.61701269,No.62272256),The Innovation Capability Enhancement Program for Small and Medium-sized Technological Enterprises of Shandong Province(No.2022TSGC2180,No.2022TSGC2123),The Innovation Team Cultivating Pro-gram of Jinan(No.202228093),The Pilot Engineering Project of Science,Education and Industry Integration(Basic Research)of Qilu Uni-versity of Technology(Shandong Academy of Sciences)(No.2022XD001),The Basic Research Strengthening Program of Computer Science and Technology Discipline of Qilu University of Technology(Shandong Academy of Sciences)(No.2021JC02014) (山东省科学院)

物联网学报

OACSTPCD

2096-3750

访问量0
|
下载量0
段落导航相关论文