基于改进YOLOv7的湖面漂浮物目标检测算法OACSTPCD
Research on improved YOLOv7 based object detection algorithm of floating objects on the lake
为提高湖面多种类和小体积的漂浮垃圾检测识别的准确度与推理检测速度,结合湖面垃圾漂浮物的图像特征,采用半结构化剪枝技术创建X-Toss剪枝框架,并基于YOLOv7目标检测模型,提出一种轻量化湖面漂浮物实时检测方法C-X-YOLOv7.X-Toss剪枝框架使用DFS算法生成父子卷积核计算图,利用特定的内核模式剪枝卷积核,降低迭代剪枝的计算成本.融合CA注意力机制对模型进行加权,减少模型过拟合现象,提高模型准确性和泛化能力.结果表明:对湖面垃圾检测识别,C-X-YOLOv7模型识别准确率为91.7%,召回率为91.2%,与YOLOv7模型对比分别提升2.6%、2.5%;推理加速度上,X-Toss剪枝框架在RTX 2080 Ti与NVIDIA Jetson TX2上分别实现YOLOv7的1.98×和2.17×的加速比,相较于PD、NMS、NS等剪枝框架,X-Toss的推理加速比和能耗均有提升.研究表明C-X-YOLOv7湖面漂浮物检测方法为湖面垃圾检测识别提供了一种新思路.
This research strives to improve the accuracy and reasoning speed of detection and identification of multi-species and small volume floating garbage on the lake.In combination with the image characteristics of floating garbage on the lake,the X-Toss pruning framework is established by adopting semi-structured pruning technology.On the basis of object detection model YOLOv7,a lightweight real-time detection method C-X-YOLOv7 for floating objects on the lake is proposed.In the X-Toss pruning framework,the DFS(depth first search)algorithm is used to generate parent-child convolution kernel calculation graph,and specific kernel mode is used to prune convolution kernel to reduce the computational cost of iterative pruning.The model is weighted by combining CA(coordinate attention)mechanism to reduce the over-fitting of the model and improve its accuracy and generalization ability.The results show that the recognition accuracy of the model C-X-YOLOv7 is 91.7%and its recall rate is 91.2%,which is 2.6% and 2.5% higher than those of the model YOLOv7,respectively.In terms of the inference acceleration,the X-Toss pruning framework achieves the acceleration ratio of 1.98×and 2.17×of YOLOv7 on RTX 2080 Ti and NVIDIA Jetson TX2,respectively.The acceleration ratio and energy consumption of X-Toss are improved in comparison with those of the pruning frameworks such as PD,NMS and NS.The research shows that the floating object detection method C-X-YOLOv7 can provide a new idea for the detection and identification of lake garbage.
徐宏伟;李然;张家旭
大连海洋大学 信息工程学院, 辽宁 大连 116023
电子信息工程
目标检测YOLOv7剪枝技术半结构化剪枝DFS算法注意力机制推理加速比湖面漂浮物
object detectionYOLOv7pruning technologysemi-structured pruningDFS algorithmattention mechanismreasoning acceleration ratiofloating objects on the lake
《现代电子技术》 2024 (001)
105-110 / 6
中国医药教育协会2022重大科学攻关问题和医药技术难题重点课题(2022KTMO36)
评论