| 注册
首页|期刊导航|现代信息科技|基于贝叶斯算法的中文新闻标题分类研究

基于贝叶斯算法的中文新闻标题分类研究

郭泓 尚庆生 赵薇 韩运龙

现代信息科技2023,Vol.7Issue(23):89-92,4.
现代信息科技2023,Vol.7Issue(23):89-92,4.DOI:10.19850/j.cnki.2096-4706.2023.23.019

基于贝叶斯算法的中文新闻标题分类研究

Research on Chinese News Title Classification Based on Bayesian Algorithm

郭泓 1尚庆生 1赵薇 1韩运龙1

作者信息

  • 1. 兰州财经大学,甘肃 兰州 730101
  • 折叠

摘要

Abstract

Abstract is a high level summary of messages,therefore,how to effectively identify abstracts quickly and accurately is an important topic in the current field of Chinese abstract recognition.This paper proposes a news classification method that combines TF-IDF and Bayesian algorithm.Using the TF-IDF algorithm to extract the set of feature words in short text,captures the semantics expressed in the short text,and calculates the corresponding TF-IDF values.The TF-IDF values are formed into feature vectors as input to the Bayesian algorithm to achieve news text classification.Finally,the prediction results are evaluated based on the error rate.The experimental results indicate that this method can combine Bayesian method with TF-IDF to achieve rapid classification of information.

关键词

贝叶斯算法/TF-IDF/新闻分类

Key words

Bayesian algorithm/TF-IDF/news classification

分类

信息技术与安全科学

引用本文复制引用

郭泓,尚庆生,赵薇,韩运龙..基于贝叶斯算法的中文新闻标题分类研究[J].现代信息科技,2023,7(23):89-92,4.

现代信息科技

2096-4706

访问量0
|
下载量0
段落导航相关论文