| 注册
首页|期刊导航|现代信息科技|基于改进ICSO-LSTM方法的城市交通预测研究

基于改进ICSO-LSTM方法的城市交通预测研究

陈暄

现代信息科技2023,Vol.7Issue(23):151-155,161,6.
现代信息科技2023,Vol.7Issue(23):151-155,161,6.DOI:10.19850/j.cnki.2096-4706.2023.23.031

基于改进ICSO-LSTM方法的城市交通预测研究

Research on Urban Traffic Prediction Based on Improved ICSO-LSTM Method

陈暄1

作者信息

  • 1. 浙江工业职业技术学院,浙江 绍兴 312000
  • 折叠

摘要

Abstract

In order to further improve traffic flow prediction on urban roads and reduce urban congestion,an urban traffic prediction method based on an Improved Chicken Swarm Optimization Long Short-Term Memory(ICSO-LSTM).Firstly,the Chicken Swarm Optimization is optimized in three aspects,namely,nonlinear decreasing rooster position update,weighted hen individual and adaptive following coefficient optimization,to address the problem that the Chicken Swarm Optimization has a fast convergence rate and easily falls into local optimum;secondly,the prediction model of ICSO optimized LSTM network parameters is established;finally,ICSO-LSTM is used in traffic flow prediction,and simulation experiments show that the method has good predictive performance in urban traffic flow prediction.

关键词

鸡群算法/长短期记忆神经网络/城市交通预测

Key words

Chicken Swarm Optimization/Long Short-term Memory Network/urban transportation forecast

分类

信息技术与安全科学

引用本文复制引用

陈暄..基于改进ICSO-LSTM方法的城市交通预测研究[J].现代信息科技,2023,7(23):151-155,161,6.

基金项目

绍兴市哲学社会科学研究"十四五"规划2023年度重点课题——基地智库专项课题(145J069) (145J069)

现代信息科技

2096-4706

访问量0
|
下载量0
段落导航相关论文