| 注册
首页|期刊导航|自动化学报|基于多层注意力和消息传递网络的药物相互作用预测方法

基于多层注意力和消息传递网络的药物相互作用预测方法

饶晓洁 张通 孟献兵 陈俊龙

自动化学报2023,Vol.49Issue(12):2507-2519,13.
自动化学报2023,Vol.49Issue(12):2507-2519,13.DOI:10.16383/j.aas.c220371

基于多层注意力和消息传递网络的药物相互作用预测方法

Drug-drug Interaction Prediction Method Based on Multi-level Attention Mechanism and Message Passing Neural Network

饶晓洁 1张通 2孟献兵 1陈俊龙2

作者信息

  • 1. 华南理工大学计算机科学与工程学院 广州 510006
  • 2. 华南理工大学计算机科学与工程学院 广州 510006||琶洲实验室 广州 510355
  • 折叠

摘要

Abstract

Drug-drug interaction(DDI)denotes the presence of inhibitory or promoting effects between different drugs.The existing DDI prediction methods often directly use drug molecular feature representation,while ignoring the different effects of different atoms within drug molecule on DDI.To solve this problem,a DDI prediction meth-od is proposed based on multi-level attention mechanism and message passing neural network.This method models the task as a link prediction problem of predicting DDI by extracting the drug molecular features from their se-quence representations.First,the atomic feature network is developed based on attention mechanism and message passing neural network.Through integration with the proposed positional encoding based on molecular centroid,the proposed network can learn from different atoms and the correlated chemical bonds to construct drug molecular graph features.Second,attention mechanism-based molecular feature network is designed,and the DDI prediction can then be realized by using supervision and contrastive loss learning.Finally,experiments demonstrate the effect-iveness and superiority of the proposed method.

关键词

药物相互作用预测/多层次注意力机制/消息传递神经网络/位置编码

Key words

Drug-drug interaction prediction/multi-level attention mechanism/message passing neural network/positional encoding

引用本文复制引用

饶晓洁,张通,孟献兵,陈俊龙..基于多层注意力和消息传递网络的药物相互作用预测方法[J].自动化学报,2023,49(12):2507-2519,13.

基金项目

国家重点研发计划(2019YFB1703600),国家自然科学基金(62006081),广东省自然科学基金面上项目(2022A1515011317),中国博士后科学基金(2020M672630)资助Supported by National Key Research and Development Pro-gram of China(2019YFB1703600),National Natural Science Foundation of China(62006081),Natural Science Foundation of Guangdong Province(2022A1515011317),and China Postdoctor-al Science Foundation Project(2020M672630) (2019YFB1703600)

自动化学报

OA北大核心CSCDCSTPCD

0254-4156

访问量4
|
下载量0
段落导航相关论文