| 注册
首页|期刊导航|自动化学报|基于加权矩阵的多维广义特征值并行分解算法

基于加权矩阵的多维广义特征值并行分解算法

高迎彬 徐中英

自动化学报2023,Vol.49Issue(12):2639-2644,6.
自动化学报2023,Vol.49Issue(12):2639-2644,6.DOI:10.16383/j.aas.c200399

基于加权矩阵的多维广义特征值并行分解算法

Multiple Generalized Eigenvalue Decomposi-tion Algorithm in Parallel Based on Weighted Matrix

高迎彬 1徐中英2

作者信息

  • 1. 火箭军工程大学导弹工程学院 西安 710025||中国电子科技集团公司第五十四研究所 石家庄 050081
  • 2. 火箭军工程大学导弹工程学院 西安 710025
  • 折叠

摘要

Abstract

In order to overcome the disadvantages of sequential algorithms,such as poor real time,a multiple generalized eigen-value decomposition algorithm is proposed based on weighted matrix method.Unlike sequential algorithms,the proposed al-gorithm is able to estimate multiple generalized eigenvectors in parallel only through one iteration procedure.The stationary point analysis shows that the algorithm reaches convergence state if and only if the state matrix is equal to the desired generalized eigenvectors.The self-stabilization characteristics of the pro-posed algorithm is proved by comparing the state matrix module values of adjacent moments.The proposed algorithm parameters are simple to select and easy to implement in practice.Numeric-al simulation and example application further verify the parallel-ism,self-stability and practicality of the algorithm.

关键词

广义特征值分解/加权矩阵/并行分解/多维估计

Key words

Generalized eigenvalue decomposition/weighted matrix/parallel decomposition/multiple estimation

引用本文复制引用

高迎彬,徐中英..基于加权矩阵的多维广义特征值并行分解算法[J].自动化学报,2023,49(12):2639-2644,6.

基金项目

国家自然科学基金(62106242,62273354)资助Supported by National Natural Science Foundation of China(62106242,62273354) (62106242,62273354)

自动化学报

OA北大核心CSCDCSTPCD

0254-4156

访问量0
|
下载量0
段落导航相关论文