| 注册
首页|期刊导航|中国电机工程学报|基于自注意力编码器和深度神经网络的短期净负荷预测

基于自注意力编码器和深度神经网络的短期净负荷预测

王炜 冯斌 黄刚 刘祝平 籍雯媗 郭创新

中国电机工程学报2023,Vol.43Issue(23):9072-9083,12.
中国电机工程学报2023,Vol.43Issue(23):9072-9083,12.DOI:10.13334/j.0258-8013.pcsee.221835

基于自注意力编码器和深度神经网络的短期净负荷预测

Short-term Net Load Forecasting Based on Self-attention Encoder and Deep Neural Network

王炜 1冯斌 1黄刚 1刘祝平 1籍雯媗 1郭创新1

作者信息

  • 1. 浙江大学电气工程学院,浙江省 杭州市 310027
  • 折叠

摘要

Abstract

With the increase of renewable energy penetration,the source-load balance and stable operation of power systems depend on more accurate and reliable forecasts.The net load is the actual load minus the renewable energy generation,and its accurate prediction can effectively improve the economy and safety of the power system.Therefore,this paper adopts a direct prediction strategy and proposes a net load prediction model based on a self-attention encoder and deep neural network,including a self-attention encoder module that extracts the original uncertainty feature information and a long and short-term memory neural network module that extracts the net load temporal features,and these two parts of feature information are input into a residual neural network to output the final prediction results.At the same time,since the net load integrates several uncertainties such as load,PV,wind power,and it is highly volatile,this paper combines conditional quantile regression to effectively implement non-parametric interval prediction to quantify forecast uncertainty and evaluate the range of net load fluctuations.Case studies show that the proposed AE-DNN forecasting model achieves higher net load forecasting accuracy than common forecasting models,and the quality of the prediction intervals is better than that of the baseline model,which can effectively support the real-time grid operation.

关键词

自注意力/编码器/深度神经网络/净负荷/区间预测

Key words

self-attention/encoder/deep neural network/net load/interval prediction

分类

信息技术与安全科学

引用本文复制引用

王炜,冯斌,黄刚,刘祝平,籍雯媗,郭创新..基于自注意力编码器和深度神经网络的短期净负荷预测[J].中国电机工程学报,2023,43(23):9072-9083,12.

基金项目

国家自然科学基金项目(U22B2098,52007173) (U22B2098,52007173)

浙江省自然科学基金项目(LQ20E070002).Project Supported by National Natural Science Foundation of China(U22B2098,52007173) (LQ20E070002)

Zhejiang Provincial Natural Science Foundation of China(LQ20E070002). (LQ20E070002)

中国电机工程学报

OA北大核心CSCDCSTPCD

0258-8013

访问量0
|
下载量0
段落导航相关论文