| 注册
首页|期刊导航|中国光学(中英文)|基于异构光子神经网络的多模态特征融合

基于异构光子神经网络的多模态特征融合

郑一臻 戴键 张天 徐坤

中国光学(中英文)2023,Vol.16Issue(6):1343-1355,13.
中国光学(中英文)2023,Vol.16Issue(6):1343-1355,13.DOI:10.37188/CO.2023-0036

基于异构光子神经网络的多模态特征融合

Multimodal feature fusion based on heterogeneous optical neural networks

郑一臻 1戴键 1张天 1徐坤1

作者信息

  • 1. 北京邮电大学信息光子学与光通信国家重点实验室,北京 100876
  • 折叠

摘要

Abstract

Current study on photonic neural networks mainly focuses on improving the performance of single-modal networks,while study on multimodal information processing is lacking.Compared with single-modal networks,multimodal learning utilizes complementary information between modalities.Therefore,multimodal learning can make the representation learned by the model more complete.In this paper,we pro-pose a method that combines photonic neural networks and multimodal fusion techniques.First,a heterogen-eous photonic neural network is constructed by combining a photonic convolutional neural network and a photonic artificial neural network,and multimodal data are processed by the heterogeneous photonic neural network.Second,the fusion performance is enhanced by introducing attention mechanism in the fusion stage.Ultimately,the accuracy of task classification is improved.In the MNIST dataset of handwritten digits classi-fication task,the classification accuracy of the heterogeneous photonic neural network fused by the splicing method is 95.75%;the heterogeneous photonic neural network fused by introducing the attention mechanism is classified with an accuracy of 98.31%,which is better than many current advanced single-modal photonic neural networks.Compared with the electronic heterogeneous neural network,the training speed of the mod-el is improved by 1.7 times;compared with the single-modality photonic neural network model,the hetero-geneous photonic neural network can make the representation learned by the model more complete,thus ef-fectively improving the classification accuracy of MNIST dataset of handwritten digits.

关键词

光子神经网络/多模态/注意力机制

Key words

photonic neural network/multimodal/attention mechanism

分类

信息技术与安全科学

引用本文复制引用

郑一臻,戴键,张天,徐坤..基于异构光子神经网络的多模态特征融合[J].中国光学(中英文),2023,16(6):1343-1355,13.

基金项目

国家自然科学基金资助(No.62171055,No.61705015,No.61625104,No.61821001,No.62135009,No.61971065) (No.62171055,No.61705015,No.61625104,No.61821001,No.62135009,No.61971065)

国家重点研发计划资助(No.2019YFB1803504) (No.2019YFB1803504)

信息光子学与光通信国家重点实验室(北京邮电大学)基金资助(No.IPOC2020ZT08,No.IPOC2020ZT03)Supported by the National Natural Science Foundation of China(No.62171055,No.61705015,No.61625104,No.61821001,No.62135009,No.61971065) (北京邮电大学)

National Key Research and Development Program(No.2019YFB1803504) (No.2019YFB1803504)

the State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications)(No.IPOC2020ZT08,No.IPOC2020ZT03) (Beijing University of Posts and Telecommunications)

中国光学(中英文)

OA北大核心CSCDCSTPCD

2095-1531

访问量0
|
下载量0
段落导航相关论文