| 注册
首页|期刊导航|中国科学数据(中英文网络版)|2001-2020年中国东北区域土壤水蚀数据集

2001-2020年中国东北区域土壤水蚀数据集

吴瀚逸 熊俊峰 侯渲 林晨 许金朵 马荣华

中国科学数据(中英文网络版)2023,Vol.8Issue(4):283-297,15.
中国科学数据(中英文网络版)2023,Vol.8Issue(4):283-297,15.DOI:10.11922/11-6035.csd.2023.0096.zh

2001-2020年中国东北区域土壤水蚀数据集

A dataset of soil water erosion of Northeast China from 2001 to 2020

吴瀚逸 1熊俊峰 2侯渲 3林晨 4许金朵 3马荣华3

作者信息

  • 1. 可持续发展大数据国际研究中心,北京 100094||北京师范大学遥感科学国家重点实验室,北京 100875||北京师范大学环境演变与自然灾害教育部重点实验室,北京 100875||中国科学院南京地理与湖泊研究所,南京 210008
  • 2. 可持续发展大数据国际研究中心,北京 100094||中国科学院南京地理与湖泊研究所,南京 210008
  • 3. 中国科学院南京地理与湖泊研究所,南京 210008||国家科技资源共享服务平台,国家地球系统科学数据中心湖泊-流域分中心,南京 210008
  • 4. 中国科学院南京地理与湖泊研究所,南京 210008
  • 折叠

摘要

Abstract

The black soil area in Northeast China plays an important role in food production and ecological security in China.However,over-cultivation practices have led to severe soil erosion,which seriously threatens food security and ecological environment in Northeast China.Accurate simulations of water erosion with high spatio-temporal resolution are important for advancing sustainable development goals,such as promoting sustainable agriculture and monitoring land degradation in Northeast China.This dataset is based on Google Earth Engine(GEE)cloud platform,integrating multi-source remote sensing data,deconstructing RUSLE model,and optimizing algorithm combinations for each factor of the model.We compared and verified the annual sand transport volume and sand transport modulus data from the main hydrological monitoring stations in Northeast China with the soil erosion modulus estimated by the RUSLE model.Then,we selected the optimal factor algorithm combination based on three accuracy metrics(time series correlation,root mean square error and mean absolute error),and obtained the estimation results of soil water erosion modulus with the resolution of 250 m.This dataset can better depict the spatial distribution and temporal changes of soil erosion modulus in Northeast China from 2001 to 2020.It can serve as an effective reference for soil erosion control and assessments in Northeast China.

关键词

土壤水蚀模数/模型优选/东北区域/RUSLE

Key words

soil water erosion/model preference/northeast China/RUSLE

引用本文复制引用

吴瀚逸,熊俊峰,侯渲,林晨,许金朵,马荣华..2001-2020年中国东北区域土壤水蚀数据集[J].中国科学数据(中英文网络版),2023,8(4):283-297,15.

基金项目

可持续发展大数据国际研究中心主任青年基金(CBAS2022DF014) (CBAS2022DF014)

国家自然科学基金青年科学基金项目(42201400) (42201400)

江苏省自然科学基金资助项目(BK20221058) (BK20221058)

全球变化背景下中国区域湖泊响应数据库(CAS-WX2021SF-0306) (CAS-WX2021SF-0306)

中国科学院南京地理与湖泊研究所科学数据中心(CAS-WX2022SDC-SJ05).The Director Fund of the International Research Center of Big Data for Sustainable Development Goals(CBAS2022DF014) (CAS-WX2022SDC-SJ05)

the National Natural Science Foundation of China(Grant No.42201400) (Grant No.42201400)

the Natural Science Foundation of Jiangsu Province for Youths(Grant No.BK20221158) (Grant No.BK20221158)

Network Security and Informatization Plan of Chinese Academy of Sciences(CAS-WX2021SF-0306) (CAS-WX2021SF-0306)

Scientific Data Center of Nanjing Institute of Geography & Limnology Chinese Academy of Sciences(CAS-WX2022SDC-SJ05). (CAS-WX2022SDC-SJ05)

中国科学数据(中英文网络版)

OACSCDCSTPCD

2096-2223

访问量0
|
下载量0
段落导航相关论文