| 注册
首页|期刊导航|中国临床医学|基于MRI影像组学机器学习模型鉴别小肾癌与乏脂肪肾血管平滑肌脂肪瘤

基于MRI影像组学机器学习模型鉴别小肾癌与乏脂肪肾血管平滑肌脂肪瘤

王睿婷 钟莲婷 潘先攀 陈磊 曾蒙苏 丁玉芹 周建军

中国临床医学2023,Vol.30Issue(6):940-945,6.
中国临床医学2023,Vol.30Issue(6):940-945,6.DOI:10.12025/j.issn.1008-6358.2023.20222164

基于MRI影像组学机器学习模型鉴别小肾癌与乏脂肪肾血管平滑肌脂肪瘤

MRI-based radiomics machine learning model for differentiating small renal cell carcinoma from fat-poor renal angiomyolipoma

王睿婷 1钟莲婷 2潘先攀 3陈磊 3曾蒙苏 1丁玉芹 1周建军4

作者信息

  • 1. 上海市影像医学研究所,上海 200032||复旦大学附属中山医院放射科,上海 200032
  • 2. 复旦大学附属中山医院厦门医院放射科,厦门 361015
  • 3. 上海联影智能有限公司,上海 200232
  • 4. 复旦大学附属中山医院厦门医院放射科,厦门 361015||厦门市影像医学临床医学研究中心,厦门 361015||厦门市放射科临床重点专科,厦门 361015
  • 折叠

摘要

Abstract

Objective To investigate the value of multi-phase MRI-based radiomics machine learning models in differentiating small renal cell carcinoma(sRCC)from fat-poor renal angiomyolipoma(fp-AML).Methods 79 cases of sRCCs and 35 cases of fp-AMLs(diameter≤4 cm)which were confirmed by pathology were retrospectively analyzed.The volume of interest(VOI)of the total tumor was manually delineated on the images of T2WI(T2),unenhanced phase(UP),corticomedullary phase(CMP)and nephrographic phase(NP)and then the radiomics of the VOIs were extracted respectively.The training set and the test set were set according to the ratio of 7∶3.The t-test,maximal relevance and minimal redundancy(mRMR)and the least absolute shrinkage and selection operator(LASSO)were used to select the radiomics features.The selected features were used to build classification models with logistic regression(LR)and support vector machine(SVM).The receiver operating characteristic(ROC)curve was used to evaluate the classification performances of the models.Results There were 4,12,3,11 and 15 optimal features obtained from T2、UP、CMP、NP and the combined four phases,respectively.The radiomics features based on NP or the combined four phases with LR model performed best,AUCs were respectively 0.956,0.986 in the training set and both were 0.881 in the test set.Conclusion The multi-phase MRI-based radiomics machine learning model has favorable diagnostic performance in differentiating sRCC from fp-AML.

关键词

磁共振成像/影像组学/小肾癌/乏脂肪肾血管平滑肌脂肪瘤

Key words

magnetic resonance imaging/radiomics/small renal cell carcinoma/fat-poor renal angiomyolipoma

分类

医药卫生

引用本文复制引用

王睿婷,钟莲婷,潘先攀,陈磊,曾蒙苏,丁玉芹,周建军..基于MRI影像组学机器学习模型鉴别小肾癌与乏脂肪肾血管平滑肌脂肪瘤[J].中国临床医学,2023,30(6):940-945,6.

基金项目

福建省科技计划项目引导性项目(2019D025),福建省卫生健康科研人才培养项目医学创新课题(2019CXB33).Supported by Science and Technology Guided Project of Fujian Province(2019D025)and Scientific Research Cultivation and Medical Innovation Project of Fujian Province(2019CXB33). (2019D025)

中国临床医学

OACSTPCD

1008-6358

访问量0
|
下载量0
段落导航相关论文