| 注册
首页|期刊导航|发电技术|气候变化条件下基于智能预测模型的虚拟电厂不确定性运行优化研究

气候变化条件下基于智能预测模型的虚拟电厂不确定性运行优化研究

贾晓强 杨永标 杜姣 甘海庆 杨楠

发电技术2023,Vol.44Issue(6):790-799,10.
发电技术2023,Vol.44Issue(6):790-799,10.DOI:10.12096/j.2096-4528.pgt.23094

气候变化条件下基于智能预测模型的虚拟电厂不确定性运行优化研究

Study on Uncertainty Operation Optimization of Virtual Power Plant Based on Intelligent Prediction Model Under Climate Change

贾晓强 1杨永标 2杜姣 2甘海庆 3杨楠4

作者信息

  • 1. 电网安全全国重点实验室(中国电力科学研究院有限公司),北京市 海淀区 100192
  • 2. 东南大学电气工程学院,江苏省 南京市 210096
  • 3. 国网江苏省电力有限公司,江苏省南京市 210000
  • 4. 国网江苏省电力有限公司南京供电分公司,江苏省 南京市 210000
  • 折叠

摘要

Abstract

In order to effectively cope with climate change and promote the healthy development of virtual power plant,an uncertainty operation optimization model of virtual power plant(VPP)adapted to climate change was proposed based on the providing regional climate for impact studies(PRECIS),BP neural network prediction model and interval optimization algorithm.PRECIS was used to simulate the changes in meteorological factors such as temperature,wind speed and radiation under different carbon emission scenarios in 2025.The BP neural network model was used to predict the power generation of photovoltaic power plants based on the simulation results of PRICES.The interval optimization algorithm was coupled with the power generation prediction results to reduce the impact caused by the influence of photovoltaic power generation uncertainty on the simulation results of the optimization model.The results show that the model can not only generate the optimal operation strategy of VPP under climate change,but also reduce operating costs and improve economic benefits.

关键词

虚拟电厂(VPP)/区域气候模型(PRECIS)/BP神经网络/不确定性优化/气候变化

Key words

virtual power plant(VPP)/providing regional climate for impact studies(PRECIS)/BP neural network/uncertainty optimization/climate change

分类

能源与动力

引用本文复制引用

贾晓强,杨永标,杜姣,甘海庆,杨楠..气候变化条件下基于智能预测模型的虚拟电厂不确定性运行优化研究[J].发电技术,2023,44(6):790-799,10.

基金项目

国家电网公司总部科技项目(5100-202118566A-0-5-SF). Project Supported by Science and Technology Projects of State Grid Corporation of China(5100-202118566A-0-5-SF). (5100-202118566A-0-5-SF)

发电技术

OACSCDCSTPCD

2096-4528

访问量0
|
下载量0
段落导航相关论文