| 注册
首页|期刊导航|电机与控制应用|基于ICEEMDAN-SE-MSGJO-LSTM-EC 的短期风电功率预测

基于ICEEMDAN-SE-MSGJO-LSTM-EC 的短期风电功率预测

刘志坚 孙瑞星 黄建 张江云 何超

电机与控制应用2023,Vol.50Issue(12):42-53,12.
电机与控制应用2023,Vol.50Issue(12):42-53,12.DOI:10.12177/emca.2023.143

基于ICEEMDAN-SE-MSGJO-LSTM-EC 的短期风电功率预测

Short-Term Wind Power Prediction Based on ICEEMDAN-SE-MSGJO-LSTM-EC

刘志坚 1孙瑞星 1黄建 1张江云 1何超1

作者信息

  • 1. 昆明理工大学电力工程学院,云南昆明 650500
  • 折叠

摘要

Abstract

In order to improve the accuracy of short-term wind power prediction,this paper proposes a short-term wind power prediction model based on the ICEEMDAN-SE-MSGJO-LSTM-EC model.Firstly,the original wind power signal is decomposed using intrinsic computing expressive empirical mode decomposition with adaptive noise(ICEEMDAN)and reconstructed by adding components with similar entropy values through sample entropy calculation;Secondly,establish an multi-strategy golden jackal optimization(MSGJO)-long short-term memory network(LSTM)prediction model,optimize the LSTM network parameters through the improved MSGJO,and predict various modal components;Finally,error correction(EC)is applied to the prediction results of each modal component and all modal prediction results are added to obtain the final prediction result.Taking a wind farm in Xinjiang as an example,simulation analysis was conducted using the prediction model proposed in this paper.The experimental results showed that the prediction model based on ICEEMDAN-SE-MSGJO-LSTM-EC proposed in this paper has higher prediction accuracy.

关键词

风电功率预测/误差修正/改进自适应噪声完全集合经验模态分解/改进金豺优化算法/长短期记忆网络

Key words

wind power prediction/error correction/intrinsic computing expressive empirical mode decomposition with adaptive noise(ICEEMDAN)/multi-strategy golden jackal optimization(MSGJO)/long short-term memory network(LSTM)

分类

信息技术与安全科学

引用本文复制引用

刘志坚,孙瑞星,黄建,张江云,何超..基于ICEEMDAN-SE-MSGJO-LSTM-EC 的短期风电功率预测[J].电机与控制应用,2023,50(12):42-53,12.

基金项目

云南省基础研究重点项目(202301AS070055)Key Basic Research Projects in Yunnan Province(202301AS070055) (202301AS070055)

电机与控制应用

OACSTPCD

1673-6540

访问量3
|
下载量0
段落导航相关论文