| 注册
首页|期刊导航|郑州大学学报(理学版)|基于多指标交互的加权时序网络节点重要性

基于多指标交互的加权时序网络节点重要性

杨晔彬 姜久雷 邹鹏

郑州大学学报(理学版)2024,Vol.56Issue(2):59-65,7.
郑州大学学报(理学版)2024,Vol.56Issue(2):59-65,7.DOI:10.13705/j.issn.1671-6841.2022251

基于多指标交互的加权时序网络节点重要性

Importance of Weighted Temporal Network Nodes Based on the Multi-index Interaction

杨晔彬 1姜久雷 2邹鹏3

作者信息

  • 1. 北方民族大学 计算机科学与工程学院 宁夏 银川 750021||常熟理工学院 计算机科学与工程学院 江苏 常熟 215500
  • 2. 常熟理工学院 计算机科学与工程学院 江苏 常熟 215500
  • 3. 北方民族大学 计算机科学与工程学院 宁夏 银川 750021
  • 折叠

摘要

Abstract

The evaluation of essential nodes in temporal networks was a hot topic in social networks.It was widely used in virus transmission,information mining and so on.Although the current algorithms considered the influence of neighbour information on nodes,they only focused on whether nodes had rela-tionships without fully considering the link strength.A new intra-layer adjacency matrix was proposed to solve the problem by considering the node-link power from the time level.At the same time,a multi-in-dex interaction algorithm was used to measure the coupling relationship between layers by considering the neighbours of nodes themselves and the common neighbours of cross-layer nodes comprehensively.Sec-ondly,the weighted super-adjacency model(WSAM)was constructed on this basis.Finally,the impor-tance of nodes in the temporal network was evaluated by calculating the eigenvector centrality of each node in the temporal network.Experimental results showed that the TWCR algorithm outperformed SAM,SSAM and WPA regarding the maximum connected component,network performance and fault tolerance.

关键词

多层网络/加权时序网络/节点重要性/多指标交互指数/最大连通分量

Key words

multi-layer network/weighted temporal network/node importance/multi-index interaction index/largest connected component

分类

信息技术与安全科学

引用本文复制引用

杨晔彬,姜久雷,邹鹏..基于多指标交互的加权时序网络节点重要性[J].郑州大学学报(理学版),2024,56(2):59-65,7.

基金项目

国家自然科学基金项目(6172002). (6172002)

郑州大学学报(理学版)

OA北大核心CSTPCD

1671-6841

访问量0
|
下载量0
段落导航相关论文