| 注册
首页|期刊导航|成都大学学报(自然科学版)|基于融合神经网络的飞机蒙皮缺陷检测的研究

基于融合神经网络的飞机蒙皮缺陷检测的研究

张德银 黄少晗 赵志恒 李俊佟 张裕尧

成都大学学报(自然科学版)2023,Vol.42Issue(4):365-371,7.
成都大学学报(自然科学版)2023,Vol.42Issue(4):365-371,7.DOI:10.3969/j.issn.1004-5422.2023.04.006

基于融合神经网络的飞机蒙皮缺陷检测的研究

Investigation of Aircraft Skin Defect Detection Based on Fusion Neural Network

张德银 1黄少晗 1赵志恒 1李俊佟 1张裕尧1

作者信息

  • 1. 中国民用航空飞行学院航空电子电气学院,四川 广汉 618307
  • 折叠

摘要

Abstract

The aircraft skin is damaged by multiple factors,such as atmospheric environment erosion,bird strike and so on.Flight safety is threatened by those factors.A skin defect detection method based on fu-sion neural network is proposed to solve the problems,such as time-consuming and insufficient manual in-spection in aircraft skin in this paper.The Xception architecture is integrated into the YOLOv5 network,and the global channel attention mechanism is added to Backbone,and the channel space attention mech-anism is added in Neck and Output so as to form a new fusion neural network based on the YOLOv5 net-work.The 8 503 images of aircraft surface defects collected are divided into training sets and test sets.Af-ter training,the new fusion neural network is verified by the test set,and the average accuracy of the five kinds of defects detection,including rivet peeling,rivet corrosion,skin peeling,skin crack and skin im-pact,are 0.960,0.928,0.931,0.934,0.948 respectively.And the overall recognition accuracy of the whole aircraft skin defects to the new fusion neural network is 0.950,the recall rate is 0.964,and the av-erage accuracy rate is 0.957.The experimental results show that the new fusion neural network is effective for aircraft skin defect recognition.

关键词

飞机蒙皮缺陷/注意力机制/深度学习/融合神经网络/目标检测

Key words

aircraft skin defects/attention mechanism/deep learning/fusion neural network/object detection

分类

航空航天

引用本文复制引用

张德银,黄少晗,赵志恒,李俊佟,张裕尧..基于融合神经网络的飞机蒙皮缺陷检测的研究[J].成都大学学报(自然科学版),2023,42(4):365-371,7.

基金项目

中国民航局科技项目(MHRD1229) (MHRD1229)

中央高校基本科研业务费专项资金项目(ZJ2022-007) (ZJ2022-007)

中国民用航空飞行学院大创立项(S202210624219) (S202210624219)

成都大学学报(自然科学版)

1004-5422

访问量2
|
下载量0
段落导航相关论文