首页|期刊导航|电子学报|基于脑电熵值特征和功能连接的不同线型道路下驾驶状态检测

基于脑电熵值特征和功能连接的不同线型道路下驾驶状态检测OACSCDCSTPCD

Detection of Driving State Under Different Curve Road based on Entropy and Functional Connectivity of EEG

中文摘要英文摘要

基于脑电信号完成对不同驾驶过程的解码分析,并就驾驶意图做出预测,是基于脑机接口的人机协同智能驾驶控制中的核心问题.为了实现对直线、左弯道和右弯道驾驶过程的识别,本文提出了基于脑电功能性脑网络和熵值特征的驾驶行为特征检测方法,并结合支持向量机和高斯混合模型等算法完成对不同线型驾驶过程的分类识别.模拟驾驶实验结果表明,本文提出的方法可有效实现对不同线型驾驶过程的识别,针对16名被试对直线和弯道驾驶过程的识别准确率均高于82%,最高达到86.66%,对左弯道和右弯道驾驶过程的识别准确率均高于75%,最高达到77.95%.对主要脑区间相互依赖关系的分析结果表明,弯道驾驶过程表现出明显的大脑对侧性特征,且左弯道驾驶相比右弯道需要更多的脑区间交互活动,而直线驾驶过程中左脑区的活动稍强于右脑区.本文研究结果对理解弯道驾驶过程中驾驶员脑认知特性,以及开展不同线型道路下驾驶行为检测和驾驶状态研究,具有一定的参考价值.

The decoding of different driving processes and driving intention prediction based on electroencephalo-gram(EEG)signals are the key issue of human computer interface based intelligent driving control.In order to realize the identification of driving process in straight road,left curve and right curve road,this paper proposes a feature extrac-tion method for driving behaviors based on functional brain network and entropy features of EEGs,and achieve thes clas-sification of different driving conditions under various curve by combining with several classifiers with the extracted EEG features.Corresponding simulation driving experiments are designed and the results show that the method proposed in this study can effectively identiy the driving process under various curve.All the classification accuracy for the 16 subjects between straight and curve road are higher than 82%,with the highest value to 86.66%,while the accuracy between left curve and right curve are higher than 75%,with the highest value to 77.95%.Interdependence analysis between different brain regions shows that there are obvious brain contralateral characteristics during curve driving.In addition,left curve driving needs more interactions between the brain regions than right curve driving,while the left hemisphere is slightly more active than the right hemisphere during straight driving.The result has significant value for understanding driver's brain cognitive characteristics in the process of curve driving and driving behavior detection under different curve road.

常文文;闫光辉;杨志飞;张冰涛;罗浩

兰州交通大学电子与信息工程学院,甘肃兰州 730070兰州交通大学电子与信息工程学院,甘肃兰州 730070兰州交通大学电子与信息工程学院,甘肃兰州 730070兰州交通大学电子与信息工程学院,甘肃兰州 730070兰州交通大学电子与信息工程学院,甘肃兰州 730070

计算机与自动化

驾驶行为弯道驾驶脑电信号脑功能连接

driving behaviorcurve drivingelectroencephalogram(EEG)functional brain networkentropy

《电子学报》 2023 (10)

面向西部人群睡眠EEG脑网络构建及其在抑郁症识别中的应用研究

2874-2883,10

兰州市科技计划项目(No.2021-1-150)国家自然科学基金(No.62062049,No.61962034)甘肃省科技计划项目(No.21ZD8RA008)兰州交通大学"天佑青年托举人才计划"基金(No.20190024)Science Project of Lanzhou City(No.2021-1-150)National Natural Science Foundation(No.62062049,No.61962034)Science Project of Gansu Province(No.21ZD8RA008)Tianyou Youth Talent Lift Program of Lanzhou Jiaotong University(No.20190024)

10.12263/DZXB.20210885

评论