|国家科技期刊平台
首页|期刊导航|电子科技|基于元学习和神经架构搜索的半监督医学图像分割方法

基于元学习和神经架构搜索的半监督医学图像分割方法OA

Semi-Supervised Medical Image Segmentation Method Based on Meta-Learning and Neural Architecture Search

中文摘要英文摘要

多数医学图像分割方法主要在相同或者相似医疗数据领域进行训练和评估,意味其需要大量像素级别的标注.但这些模型在领域分布外的数据集上面临挑战,被称为"域偏移"问题.通常使用固定的U形分割架构解决该问题,导致其无法更好地适应特定分割任务.文中提出了一种基于梯度的元学习与神经架构搜索方法,可以根据特定任务调整分割网络以实现良好的性能并且拥有良好的泛化能力.该方法主要使用特定任务进行架构搜索模块来进一步提升分割效果,再使用基于梯度的元学习训练算法提升泛化能力.在公共数据集M&Ms上,在 5%标签数据下,其Dice和Hausdorff distance分别为79.62%、15.38%.在 2%标签数据下,其Dice和Hausdorff distance分别为 74.03%、17.05%.与其他主流方法相比,文中所提方法拥有更好的泛化能力.

Most medical image segmentation methods mainly focus on training and evaluating in the same or similar medical data domain,which need lots of pixel-level annotations.However,these models face challenges in out-of-distribution medical data set,which is known as"domain shift"problem.A fixed U-shaped segmentation structure is usually used to solve this problem,resulting in it not being better adapted to specific partition tasks.A gradient-based meta-learning and neural architecture search method is proposed in this study,which can adjust the segmentation network according to specific tasks to achieve good performance and have good generalization ability.This method mainly uses the specific task to carry out the architecture search module to further improve the segmenta-tion effect,and then uses the gradient-based meta-learning training algorithm to improve the generalization ability.On the public dataset M&Ms,under the 5%label data,its Dice and Hausdorff distance are 79.62%and 15.38%.Under 2%label data,its Dice and Hausdorff distance are 74.03%and 17.05%.Compared with other mainstream methods,the proposed method has better generalization ability.

于智洪;李菲菲

上海理工大学 光电信息与计算机工程学院,上海 200093

计算机与自动化

医学图像分割元学习神经架构搜索域泛化解耦表示半监督学习卷积神经网络深度学习

medical image segmentationmeta-learningneural architecture searchdomain generalizationdisentangle representationssemi-supervised learningconvolutional neural networkdeep learning

《电子科技》 2024 (001)

17-23 / 7

上海市高校特聘教授(东方学者)岗位计划(ES2015XX)The Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning(ES2015XX)

10.16180/j.cnki.issn1007-7820.2024.01.003

评论