| 注册
首页|期刊导航|华中科技大学学报(自然科学版)|基于改进量子头脑风暴算法的UAV三维航迹规划

基于改进量子头脑风暴算法的UAV三维航迹规划

孙希霞 丁喆 蔡超 潘甦

华中科技大学学报(自然科学版)2024,Vol.52Issue(1):112-117,132,7.
华中科技大学学报(自然科学版)2024,Vol.52Issue(1):112-117,132,7.DOI:10.13245/j.hust.240416

基于改进量子头脑风暴算法的UAV三维航迹规划

Three-dimensional path planning for UAV based on improved quantum-behaved brain storming optimization algorithm

孙希霞 1丁喆 1蔡超 2潘甦1

作者信息

  • 1. 南京邮电大学物联网学院,江苏 南京 210003
  • 2. 华中科技大学人工智能与自动化学院,湖北武汉 430074
  • 折叠

摘要

Abstract

Considering the problem of path planning for unmanned aerial vehicle(UAV)in complex environment,a three-dimensional path planning method for UAV based on improved quantum-behaved brain storm optimization(QBSO)algorithm was proposed.In the early stage of the evolution process,two populations evolved independently,thereby improving the global search ability of the algorithm.In the late stage of evolution process,individuals in each population were ranked and those individuals ranked in the top half in each population formed a new population.Then,the new population continued to evolve according to the evolution mechanism of QBSO,which accelerated the convergence speed of the algorithm.In addition,to further improve the global search ability of the algorithm,an improved generation method for individuals to be mutated was proposed.Experimental results show that the path planner based on the improved QBSO algorithm outperforms the BSO,quantum-behaved BSO,improved BSO and global-best BSO algorithms based path planners in terms of explorability,convergence precision and stability.

关键词

无人飞行器/航迹规划/量子头脑风暴优化/进化机制/收敛精度

Key words

unmanned aerial vehicle/path planning/quantum-behaved brain storm optimization(QBSO)/evolution mechanism/convergence precision

分类

航空航天

引用本文复制引用

孙希霞,丁喆,蔡超,潘甦..基于改进量子头脑风暴算法的UAV三维航迹规划[J].华中科技大学学报(自然科学版),2024,52(1):112-117,132,7.

基金项目

国家自然科学基金资助项目(62071244,62172235). (62071244,62172235)

华中科技大学学报(自然科学版)

OA北大核心CSTPCD

1671-4512

访问量0
|
下载量0
段落导航相关论文