| 注册
首页|期刊导航|计算机工程与应用|改进YOLOv7-tiny的轻量级红外车辆目标检测算法

改进YOLOv7-tiny的轻量级红外车辆目标检测算法

许晓阳 高重阳

计算机工程与应用2024,Vol.60Issue(1):74-83,10.
计算机工程与应用2024,Vol.60Issue(1):74-83,10.DOI:10.3778/j.issn.1002-8331.2305-0312

改进YOLOv7-tiny的轻量级红外车辆目标检测算法

Improved YOLOv7-tiny Lightweight Infrared Vehicle Target Detection Algorithm

许晓阳 1高重阳1

作者信息

  • 1. 西安科技大学 计算机科学与技术学院,西安 710054
  • 折叠

摘要

Abstract

In order to solve the problems of large number of parameters and computation,low recognition accuracy,and difficult small target detection in infrared scene,a lightweight infrared vehicle target detection algorithm with improved YOLOv7-tiny is proposed:KD-YOLO-DW.Firstly,the ELAN-DW module is proposed by merging deep separable convolution,which greatly reduces the number of network parameters and the amount of computation.Secondly,by intro-ducing GhostNet V2 module in the feature fusion layer,the fusion ability of different scale features is improved.The WIoU loss function of dynamic non-monotone FM is used to solve the problem of imbalanced samples in the infrared data set,and the detection ability of the lightweight algorithm is improved.Then,a cross-scale fusion strategy is proposed in combination with residual idea,which improves the detection effect of lightweight algorithm on different scale targets and reduces the missing rate of small targets.Finally,the lightweight model is reconcentrated by knowledge distillation,which further improves the accuracy of the model for detecting infrared targets.The experimental results show that compared with the YOLOv7-tiny model,KD-YOLO-DW model has 24.6%and 16.7%fewer parameters and 16.7%less computation,the model size is only 9.2 MB,and mAP is increased by 3.27 and 3.15 percentage points,respectively,with smaller model volume and better detection effect.

关键词

红外目标检测/轻量级/知识蒸馏/损失函数/YOLOv7-tiny/GhostNet V2

Key words

infrared target detection/lightweight/knowledge distillation/loss function/YOLOv7-tiny/GhostNet V2

分类

信息技术与安全科学

引用本文复制引用

许晓阳,高重阳..改进YOLOv7-tiny的轻量级红外车辆目标检测算法[J].计算机工程与应用,2024,60(1):74-83,10.

基金项目

国家自然科学基金(12071367) (12071367)

陕西省"特支计划"青年拔尖人才项目(289890259). (289890259)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文