| 注册
首页|期刊导航|计算机工程与应用|改进YOLOv7的小目标检测算法研究

改进YOLOv7的小目标检测算法研究

李安达 吴瑞明 李旭东

计算机工程与应用2024,Vol.60Issue(1):122-134,13.
计算机工程与应用2024,Vol.60Issue(1):122-134,13.DOI:10.3778/j.issn.1002-8331.2307-0004

改进YOLOv7的小目标检测算法研究

Research on Improving YOLOv7's Small Target Detection Algorithm

李安达 1吴瑞明 1李旭东1

作者信息

  • 1. 浙江科技学院 浙江省食品物流装备技术研究重点实验室,杭州 310023
  • 折叠

摘要

Abstract

With the continuous application of deep learning in domestic object detection,conventional large and medium object detection has made astonishing progress.However,due to the limitations of convolutional networks themselves,there are still issues of missed and false detections in small object detection.Taking dataset Visdrone 2019 and dataset FloW-Img as examples,the YOLOv7 model is studied,and the ELAN module of the backbone network is improved in the network structure.The Focal NeXt block is integrated into the long and short gradient paths of the ELAN module to enhance the feature quality of small targets and improve the contextual information content contained in the output features.The RepLKDeXt module is introduced into the head network,which not only replaces the SPPCSPC module to simplify the overall structure of the model,but also optimizes the ELAN-H structure using multi-channel,large convolu-tional kernels,and Cat operations.Finally,the SIOU loss function is introduced to replace the CIOU function to improve the robustness of the model.The results show that the improved YOLOv7 model reduces the number of parameters and computational complexity,and its detection performance remains approximately unchanged on the Visdrone 2019 dataset with high small target density.It increases by 9.05 percentage points on the sparse FloW-Img dataset with small targets,further simplifying the model and increasing its applicability.

关键词

YOLOv7模型/小目标检测/大卷积核/损失函数

Key words

YOLOv7 model/small target detection/large convolutional kernels/loss function

分类

信息技术与安全科学

引用本文复制引用

李安达,吴瑞明,李旭东..改进YOLOv7的小目标检测算法研究[J].计算机工程与应用,2024,60(1):122-134,13.

基金项目

浙江省公益技术研究计划项目(GG19E050012) (GG19E050012)

浙江科技学院研究生科研创新基金(2021yjskc03). (2021yjskc03)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文