注意力特征融合的快速遥感图像目标检测算法OACSTPCD
Fast Remote Sensing Image Object Detection Algorithm Based on Attention Feature Fusion
针对遥感图像背景复杂、小目标多、特征提取难等问题,提出了一种注意力特征融合的快速遥感图像目标检测算法——YOLO-Aff.该算法设计了一种带通道注意力的主干网络模块(ECALAN)以及模糊池(BP)模块来减小下采样带来的损失.此外,采用了一种无跨步卷积的特征金字塔网络(SPD-FPN)结合SimAM注意力特征融合模块(CBSA)来增强特征的跨尺度融合能力.最后,通过使用Wise-IoU作为网络的坐标损失来优化样本不均衡问题.实验结果表明,改进的YOLO-Aff算法在NWPU VHR-10数据集上的mAP值达到96%,较原算法mAP提高了2.9个百分点,为遥感图像的快速、高精度目标检测提供了新的解决方案.
Aiming at the challenges of complex backgrounds,numerous small targets,and difficulty in feature extraction in remote sensing images,a fast remote sensing image object detection algorithm based on attention feature fusion—YOLO-Aff is proposed.This algorithm designs a backbone network module(ECALAN)with channel attention and a blur pool(BP)module to reduce the loss caused by downsampling.In addition,a feature pyramid network(SPD-FPN)with no stride convolution is used to combine the SimAM attention feature fusion module(CBSA)to enhance the cross-scale feature fusion performance of the features.Finally,Wise-IoU is used as the coordinate loss of the network to optimize the sample imbalance problem.The experimental results show that YOLO-Aff achieves an mAP value of 96%on the NWPU VHR-10 dataset,which is 2.9 percentage points higher than the original algorithm,and provides a new solution for fast and high-precision object detection of remote sensing images.
吴建成;郭荣佐;成嘉伟;张浩
四川师范大学 计算机科学学院,成都 610101
计算机与自动化
遥感图像目标检测YOLO注意力机制特征融合
remote sensing imageobject detectionYOLOattention mechanismfeature pyramid
《计算机工程与应用》 2024 (001)
207-216 / 10
国家自然科学基金(11905153,61701331).
评论