| 注册
首页|期刊导航|计算机工程与应用|注意力特征融合的快速遥感图像目标检测算法

注意力特征融合的快速遥感图像目标检测算法

吴建成 郭荣佐 成嘉伟 张浩

计算机工程与应用2024,Vol.60Issue(1):207-216,10.
计算机工程与应用2024,Vol.60Issue(1):207-216,10.DOI:10.3778/j.issn.1002-8331.2303-0375

注意力特征融合的快速遥感图像目标检测算法

Fast Remote Sensing Image Object Detection Algorithm Based on Attention Feature Fusion

吴建成 1郭荣佐 1成嘉伟 1张浩1

作者信息

  • 1. 四川师范大学 计算机科学学院,成都 610101
  • 折叠

摘要

Abstract

Aiming at the challenges of complex backgrounds,numerous small targets,and difficulty in feature extraction in remote sensing images,a fast remote sensing image object detection algorithm based on attention feature fusion—YOLO-Aff is proposed.This algorithm designs a backbone network module(ECALAN)with channel attention and a blur pool(BP)module to reduce the loss caused by downsampling.In addition,a feature pyramid network(SPD-FPN)with no stride convolution is used to combine the SimAM attention feature fusion module(CBSA)to enhance the cross-scale feature fusion performance of the features.Finally,Wise-IoU is used as the coordinate loss of the network to optimize the sample imbalance problem.The experimental results show that YOLO-Aff achieves an mAP value of 96%on the NWPU VHR-10 dataset,which is 2.9 percentage points higher than the original algorithm,and provides a new solution for fast and high-precision object detection of remote sensing images.

关键词

遥感图像/目标检测/YOLO/注意力机制/特征融合

Key words

remote sensing image/object detection/YOLO/attention mechanism/feature pyramid

分类

计算机与自动化

引用本文复制引用

吴建成,郭荣佐,成嘉伟,张浩..注意力特征融合的快速遥感图像目标检测算法[J].计算机工程与应用,2024,60(1):207-216,10.

基金项目

国家自然科学基金(11905153,61701331). (11905153,61701331)

计算机工程与应用

OACSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文