| 注册
首页|期刊导航|计算机工程与应用|二次聚类的无监督行人重识别方法

二次聚类的无监督行人重识别方法

熊明福 肖应雄 陈佳 胡新荣 彭涛

计算机工程与应用2024,Vol.60Issue(1):227-235,9.
计算机工程与应用2024,Vol.60Issue(1):227-235,9.DOI:10.3778/j.issn.1002-8331.2207-0469

二次聚类的无监督行人重识别方法

Unsupervised Person Re-Identification Based on Quadratic Clustering

熊明福 1肖应雄 2陈佳 2胡新荣 2彭涛2

作者信息

  • 1. 武汉纺织大学 计算机与人工智能学院,武汉 430200||武汉大学 国家网络安全学院,武汉 430072
  • 2. 武汉纺织大学 计算机与人工智能学院,武汉 430200
  • 折叠

摘要

Abstract

In view of the influence of objective factors such as hardware differences and illumination changes,the current unsupervised person re-identification method leads to a large contrast in the image of the same person,which is easy to cause the problem of wrong pseudo-labels generation of samples,which makes the existing unsupervised person re-identification method.There is still room for further improvement in the identification method.To solve this problem,this paper proposes an unsupervised person re-identification based on quadratic clustering method.This method mainly includes global quadratic clustering module and supervised learning module based on quadratic clustering results.Specifi-cally,the former performs unsupervised analysis of camera ID and pedestrian ID based on global quadratic clustering,which solves the problem of unified imaging style of the same pedestrian under different camera perspectives;the latter uses supervised learning to improve memory.The initialization and update method of the dictionary solves the problem of model offset during training.Through the co-training of this dual module,it can jointly suppress the problem of false labels generated by images collected across cameras.The algorithm proposed in this paper is tested on Market-1501,DukeMTMC-ReID,MSMT17,Person and VeRi-776 datasets,respectively,and achieves mAP=81.2%and rank-1=91.2%,mAP=68.4%and rank-1=78.7%,mAP=31.1%and rank-1=60.4%,mAP=88.3%and rank-1=93.6%,compared with the current state-of-the-art methods,they have improved by 2.4,1.8,6.0,2.5 and 4.3 percentage points rank-1 accuracy.

关键词

行人重识别/无监督学习/二次聚类/协同训练

Key words

person re-identification/unsupervised learning/quadratic clustering/collaborative training

分类

信息技术与安全科学

引用本文复制引用

熊明福,肖应雄,陈佳,胡新荣,彭涛..二次聚类的无监督行人重识别方法[J].计算机工程与应用,2024,60(1):227-235,9.

基金项目

湖北省自然科学基金面上项目(2021CFB568) (2021CFB568)

国家重点研发计划项目(2021YFF0602102). (2021YFF0602102)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文